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Abstract

In this study, a method of analysis is presented for investigating the effects of elastic foundation and fluid on the
dynamic response characteristics (natural frequencies and associated mode shapes) of rectangular Kirchhoff plates. For
the interaction of the Kirchhoff plate—Pasternak foundation, a mixed-type finite element formulation is employed by using
the Gateaux differential. The plate finite element adopted in this study is quadrilateral and isoparametric having four
corner nodes, and at each node four degrees of freedom are present (one transverse displacement, two bending moments
and one torsional moment). Therefore, a total number of 16 degrees-of-freedom are assigned to each element. A consistent
mass formulation is used for the eigenvalue solution in the mixed finite element analysis. The plate structure considered is
assumed clamped or simply supported along its edges and resting on a Pasternak foundation. Furthermore, the plate is
fully or partially in contact with fresh water on its one side. For the calculation of the fluid—structure interaction effects
(generalized fluid—structure interaction forces), a boundary element method is adopted together with the method of images
in order to impose an appropriate boundary condition on the fluid’s free surface. It is assumed that the fluid is ideal, i.e.,
inviscid, incompressible, and its motion is irrotational. It is also assumed that the plate—elastic foundation system vibrates
in its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to a corresponding surface pressure
distribution on the wetted surface of the structure. At the fluid—structure interface, continuity considerations require that
the normal velocity of the fluid is equal to that of the structure. The normal velocities on the wetted surface of the structure
are expressed in terms of the modal structural displacements, obtained from the finite element analysis. By using the
boundary integral equation method the fluid pressure is eliminated from the problem, and the fluid—structure interaction
forces are calculated in terms of the generalized hydrodynamic added mass coefficients (due to the inertial effect of fluid).
To asses the influences of the elastic foundation and fluid on the dynamic behavior of the plate structure, the natural
frequencies and associated mode shapes are presented. Furthermore, the influence of the submerging depth on the dynamic
behavior is also investigated.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Plate structures have been widely used in various engineering fields, and their dynamic response behaviors
are well studied and, therefore, a large number of publications can be found in the open literature (see, for
instance, [1,2]). However, when they are resting on an elastic foundation and/or are partially or fully in contact
with a fluid of comparable density, such as water, the foundation—structure and/or fluid—structure interaction
effects play significant roles in their response behaviors and alter the dynamic states of the structures from
those vibrating in the absence of fluid and foundation. Hence, the vibration behavior of the plate structures on
elastic foundation and/or in contact with fluid is of great importance in structural, aerospace, civil, mechanical
and marine engineering applications.

For the response behavior of elastic structures resting on an elastic foundation, a mechanical model is
required to predict the interaction effects between the structure and foundation. Various mechanical models
such as Winkler, Pasternak and Vlasov have been proposed in the open literature. The simplest mechanical
model was developed by Winkler [3], which is generally referred to as a one-parametric model. The transverse
deformation characteristics of the elastic foundation are defined by means of continuous and closely spaced
linear springs. For instance, Gupta et al. [4] investigated the buckling and vibrational behavior of polar
orthotropic circular plates resting on a Winkler-type foundation. The frequency values were calculated by
using the Ritz method. It was observed that the presence of an elastic foundation increases the frequency
values.

The deficiency of the Winkler formulation is the behavioral inconsistency due to the discontinuity of
displacements on the boundary of the uniformly loaded surface area, and, therefore, two-parameter models
were introduced. Among these models, the Pasternak formulation is the most popular one due to its
simplicity. The second parameter in this model serves to represent the shear interaction between the plate and
foundation. A number of pioneering finite element studies on static, dynamic and stability analysis of the
Kirchhoff plate-Pasternak foundation interaction problems were conducted by Omurtag et al. [5], Ozgelikdrs
et al. [6] and Dogruoglu and Omurtag [7]. The free vibration results of Omurtag et al. [5] were also confirmed
by the three-dimensional analysis of Zhou et al. [§]. Zhou et al. [8] determined the three-dimensional vibration
characteristics of thick rectangular plates resting on an elastic foundation using the Pasternak model. Their
analysis is based on the three-dimensional, small-strain, linear and exact elasticity theory, and the Ritz method
was used to derive the frequency equation of the plate—foundation system by augmenting the strain energy of
the plate with the elastic potential energy of the foundation. Eratli and Ako6z [9] solved the free vibration
problem of a Reissner plate on a Pasternak foundation. Dumir [10] studied the von-Karman-type,
geometrically nonlinear, axisymmetric, static and transient responses of circular plates resting on a Pasternak
foundation by using the point-collocation method for the spatial discretization, and the step-increment
method for time. Shen et al. [11] investigated the free and forced vibration of the Reissner—Midlin plates with
four free edges and resting on a Pasternak foundation by including the thermal effects. For the solution, they
adopted the Rayleigh—Ritz method in conjunction with a set of admissible functions for satisfying both the
geometrical and the natural boundary conditions. On the other hand, Xiang et al. [12] derived the analytical
vibration and buckling solutions for simply supported, rectangular Mindlin plates on a Pasternak foundation.
Wang et al. [13] obtained the relationship between the natural frequencies of the Reddy and Kirchhoff
plates, with simply supported edge conditions. They also investigated the effects of initial stresses and
Winkler—Pasternak foundation on the relationship. Very recently, Yu et al. [14] studied the dynamic
responses of the Reissner—Mindlin plates resting on Winkler- and Pasternak-type elastic foundations. The
formulations are based on the Reissner—Mindlin first-order shear deformation plate theory and including the
plate—foundation interaction and thermal effects.

The fluid—structure interaction problems of plate structures partially or totally immersed in fluid have also
received much attention due to their importance in various engineering fields. For instance, Ergin and Ugurlu
[15] and Fu and Price [16] investigated the dynamic response characteristics (wet natural frequencies and
associated mode shapes) of cantilever rectangular plates partially submerged in fluid. They observed that the
frequency values of the plate structures decrease with increasing area of contact with fluid. Jeong et al. [17]
studied the wet resonance frequencies and associated mode shapes of two identical rectangular plates
coupled with a bounded fluid. The analytical method was developed by using a finite Fourier series expansion.
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The frequencies of the in-phase vibrational modes of the plate structures were predicted well, but those of the
out-of-phase vibrational modes could not be estimated precisely. On the other hand, Chang and Liu [18]
calculated the natural frequencies of a rectangular isotropic plate in contact with fluid, for various boundary
conditions. They observed that the wer modes were almost identical to the dry mode shapes. Meanwhile, the
free vibration of circular plates in contact with fluid has been studied by various researchers (see, for instance,
[19-21)).

Although a considerable amount of work dealing with the vibration of plate structures either resting
on a foundation or in contact with fluid has been found in the open literature, few have been reported
on the vibration of plates resting on an elastic foundation, and at the same time, in contact with
fluid. Therefore, in this study, a method of analysis is presented for investigating the effects of an
elastic foundation and fluid on the dynamic response characteristics (natural frequencies and associated
mode shapes) of rectangular Kirchhoff plates. A mixed-type finite element formulation is employed,
by using the Gateaux differential for the derivation of the functional for the Kirchhoff plate—Pasternak-type
elastic foundation interaction. The plate finite element PLTVE4 [5] is adopted in this study. It is a
rectangular isoparametric-conforming C° class element having four corner nodes, and at each node
four degrees of freedom are present (one transverse displacement, two bending moments and one
torsional moment). Therefore, a total number of 16 degrees of freedom are assigned to each element.
Since the functional does not have derivatives higher than first order, bilinear shape functions are used.
The plate structure considered in this study is assumed to be clamped or simply supported along
its edges and resting on a Pasternak foundation, and it is fully or partially in contact with fresh water,
as illustrated in Fig. 1. By a Pasternak-type elastic foundation modeling, the influence of shear between the
plate and foundation is inserted into the formulation by a shear layer besides the vertical spring elements (see
Fig. 2).

In this paper, for the calculation of the fluid—structure interaction effects, a boundary element method is
adopted together with the method of images, in order to impose an appropriate boundary condition on the
fluid’s free surface. The boundary element method presented in this study is already successfully applied to
structures partially filled or partially submerged in a quiescent fluid (see, for example, Refs. [22,23]). However,
the method is employed for a fluid—structure—foundation interaction problem (a rectangular plate structure in
contact with an elastic foundation on its one side, and partially or fully in contact with fluid on the other side)
for the first time (see Fig. 1). In this investigation, it is assumed that the fluid is ideal, i.e., inviscid,
incompressible and its motion is irrotational. It is also assumed that the plate structure resting on the elastic

elastic
foundation

Fig. 1. Plate structure resting on a foundation and partially in contact with fluid.
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Fig. 2. Pasternak foundation: (a) shear layer element; (b) mechanical model.

foundation vibrates in its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to
a corresponding surface pressure distribution on the wetted surface of the structure. The in vacuo dynamic
analysis entails the vibration of the elastic plate—foundation system in the absence of any external force and
structural damping, and the corresponding dynamic characteristics (e.g., natural frequencies and mode
shapes) of the system were obtained by using a mixed-type finite element formulation and the plate finite
element PLTVEA4.

At the fluid-structure interface, continuity considerations require that the normal velocity of the fluid is
equal to that of the structure. The normal velocities on the wetted surface of the structure are expressed in
terms of the modal structural displacements, obtained from the finite element analysis of the plate—-foundation
system. By using a boundary integral equation method the fluid pressure is eliminated from the problem, and
the fluid—structure interaction forces are calculated in terms of the generalized hydrodynamic added mass
coefficients (due to the inertial effect of fluid).

In this analysis, the wetted surface is idealized by using appropriate boundary elements, referred to as
hydrodynamic panels. The generalized structural mass matrix is merged with the generalized hydrodynamic
added mass matrix. Then, the total generalized added mass and stiffness matrices are used together
in solving the eigenvalue problem for the fluid—elastic plate—clastic foundation interaction problem.
To asses the influence of the elastic foundation and fluid on the dynamic behavior of the plate structure,
the natural frequencies and associated mode shapes are presented. Furthermore, the influence of the
submerging depth ratio and various foundation types on the dynamic behavior of the plate structure is also
investigated.

2. Mathematical model
2.1. Functional and mixed finite element formulation for foundation— plate interaction

2.1.1. Variational formulation

Before presenting the necessary steps for the mixed-type formulation based on the Gateaux differential,
some principal variational definitions are given. Q is a potential operator (positive definite and self-adjoint), if
the equality (dQ(y;¥),y*) = (dQ(y;y*),y) is satisfied, where dQ(y;y) and dQ(y;y*) are the Giteaux
derivatives of the operator in y and y* directions, respectively [24]. ¥ and y* are field variables in different
directions. Field equations can be written in an operator form as, Q = Ly—f, where L is a differential
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operator, y is the field variable vector and f is the load vector. If the operator Q is potential the corresponding
functional for the field equations is obtained as follows:

1
10) = /0 [QGsy: ¥), ¥Ids, (1)

where s is a scalar quantity.

2.1.2. Elastic foundation

The Pasternak model [25] is the most natural extension of the Winkler model [3], and it considers a shear
interaction between the spring elements by connecting the ends of the springs to a plate of an incompressible
shear layer (see Figs. 2 (a) and (b)), which deforms only due to transverse shears V. and V:

- 0w = 0w
Vx: Ga and Vy: G@, (2)

where G is the shear modulus of the foundation continuum and w represents the deflection of the shear layer.
The coordinates x, y and z are shown in Fig. 3.

Recalling the lateral equilibrium in Fig. 3, the reaction—deflection relation of the shear layer and spring
elements is given by

_0*w 0w

pZZkW—G@—Ga—yz, (3)
where p. is the intensity of the reaction force of the foundation. The first parameter k is the modulus of the
subgrade reaction of foundation. The last two terms on the right-hand side of equality (3) corresponds to the
shear interaction of the shear layer. As a special case, if we let G = 0, the above equation directly converges to
a Winkler model.

2.1.3. Plate—foundation coupling
The positive directions of the coordinate axes (x,y,z), deflection w, bending moments K, M and
torsional moment 7 are depicted in Fig. 3. Considering the plate—foundation interaction, the complete

Elastic
foundation

kw

Fig. 3. Plate—elastic foundation interaction and positive directions of plates degrees of freedom.



B. Ugurlu et al. | Journal of Sound and Vibration 317 (2008) 308-328

set of field equations becomes
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313

; (4)

where E is the Young’s modulus and v is Poisson’s ratio and p and % represent the mass density and thickness

of the plate, respectively.

2.1.4. Functional

Using the Gateaux differential and Eq. (1), a functional for the free vibration analysis of the Kirchhoff

plate—Pasternak foundation system was obtained by Omurtag et al. [5] as
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where the terms (...), and (...), represent the dynamic and the geometric boundary conditions, respectively.
The subscripts P and F refer to the plate and the foundation, respectively. The terms defined as (-*-) are
valid if and only if the boundary conditions are known; otherwise, they disappear. w is the natural
circular frequency. The functional given in Eq. (5) is suitable for a mixed finite element formulation. Hence

E=Exy)
“n=n(x,y)

—

X_X(L_, i’[) (=1,-1)
“ y=y(En)

1.-1

o)

Fig. 4. Quadrilateral isoparametric finite element. Key: O, element nodes; +, Gauss points.
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a four-noded isoparametric quadrilateral element with a 2 x 2 Gauss scheme is used throughout the numerical
analysis. As shown in Fig. 4 an arbitrary element Q, and master element Q,, are depicted. An invertible
transformation between them exists by means of the maps 7, of Q,,, onto Q, by the change of coordinates, and
similarly 7,7 is the inverse map from @, to Q,,. The nodal unknowns are the transverse displacement w, two
bending moments K, M and torsional moment 7, and their positive directions are shown in Fig. 3. The details
of the finite element formulation can be found in Ref. [5].

2.1.5. Calculation of natural frequencies of the plate—foundation system

The natural frequencies of the plate—foundation system are obtained from the solution of a standard
eigenvalue problem [k]—w?[m] = 0. By means of the conventional assemblage technique the system matrix [k]
and the mass matrix [m] for the entire domain are obtained. In the mixed FE analysis, the problem of free
vibration yields the following eigenvalue problem:

k] kel]  Sf00 @\ f 0[O ©
kil [kaol| ~ (0] ml| )Y~ Yoy [

where {f} ={K M T}T and {w} are the stress resultants and the transverse displacement vector,
respectively [5]. Elimination of {f} from Eq. (6) yields

(K] — o’ [uD{o} = {0}, ()

where [k*] = [kao]—[ki2][ki1]7'[ki2] and [k*] is the condensed system matrix of the problem and if an
interaction problem between the plate and foundation is absent [k,,] = [0]. The element mass matrix is derived
using a consistent mass formulation.

2.2. Formulation of fluid— structure interaction problem

2.2.1. Fluid formulation

The fluid is assumed to be ideal, i.e., inviscid and incompressible, and its motion is irrotational
and there exists a fluid velocity vector, v, which can be defined as the gradient of the velocity potential
function @ as

v(x,y,2,1) = VO(x,,z2,1), )

where @ satisfies Laplace’s equation, V2@ = 0, throughout the fluid domain.

Before describing the responses of the flexible structure, it is necessary to assign coordinates to the
deflections at various degrees of freedom and one particular set of generalized coordinates is the principal
coordinate of the dry structure (see, for example, Ref. [26]). For a structure vibrating in an ideal fluid, with
frequency o, the principal coordinate, describing the response of the structure in the rth modal vibration, may
be expressed by

p0) = pg, €. 9)

The velocity potential function due to the distortion of the structure in the rth in vacuo vibrational mode
may be written as follows:

D,(x,p,2,1) = i0p,(x,y,2)py €, 1 =1,2..., Ny, (10)

where N, represents the number of modes of interest and py, is an unknown amplitude for the rth principal
coordinate.

On the wetted surface of the vibrating structure the normal fluid velocity must equal the normal velocity on
the structure and this condition for the rth modal vibration of the elastic structure submerged in a quiescent
fluid can be expressed as

0,
on

=u,-n, (11)
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where n is the unit normal vector on the wetted surface and points out of the region of interest.
The vector u, denotes the displacement response of the structure in the rth principal mode and it may be
written as

iot

u)‘(x7y’za [) = u)‘(x!y’ Z)p()re > (12)

where u, (x, y, z) is the rth modal displacement vector of the median surface of the plate structure, and it is
obtained from the finite element analysis.

It is assumed that the elastic structure vibrates at relatively high frequencies so that the effect of surface
waves can be neglected. Therefore, the free surface condition (infinite frequency limit condition) (see, for
instance, Ref. [15]) for the perturbation potential can be approximated by

¢, =0, on the free surface. (13)

The method of images [23] may be used to satisfy this boundary condition. By adding an imaginary
boundary region, the condition given by Eq. (13) at the horizontal surface can be omitted; thus, the problem is
reduced to a classical Neumann case.

2.2.2. Numerical evaluation of perturbation potential ¢
The boundary value problem for the perturbation potential, ¢, may be expressed in the following form:

(D& = // (¢*(s, ©)a(s) — P(s)g™(s, £)dS, (14)
Sw

where ¢ and s denote, respectively, the evaluation and field points on the wetted surface. Sy denotes the
wetted surface of the structure. ¢* is the fundamental solution, defined as a solution of the equation
V2h*(s,6) = —d(s,&), where 0(s,¢) is the Dirac distribution. It satisfies the Laplace equation everywhere except
the evaluation point &, and, for a three-dimensional problem, it is expressed as follows:

60 = o (15)

q = 0¢p/0On is the flux and r the distance between the evaluation and field points. The free term ¢(&) is due to the
shifting of ¢ to the boundary with a limit process and defines the fraction of ¢(&) that lies inside the domain of
interest. Moreover, ¢*(s,£) can be written as

q*(s, &) = —(0r/on) /4mr*. (16)

For the solution of Eq. (14) with boundary condition (11), the wetted surface can be idealized by using
boundary elements, referred to as hydrodynamic panels, and the distribution of the potential function and its
flux over each hydrodynamic panel may be described in terms of the shape functions and nodal values as

He ne
b= Nt 4= _Nejdy. (17
=1 =1

Here, n, represents the number of nodal points assigned to the eth hydrodynamic panel, and N,; the shape
function adopted for the distribution of the potential function. e and j indicate the hydrodynamic panel and
nodal point numbers, respectively. For the linear distribution adopted in this study, the shape functions for a
quadrilateral panel may be expressed as (see Ref. [27])

Net = ((1 =01 —n)/4,
N = (1400 —n)/4,
Ny = ((1+ 00 +n)/4,
Ney=((1 =00 +n)/4 (18)

in the local coordinate system-{ # shown in Fig. 5. For a quadrilateral panel having 4 nodal points at its
corners, n, takes on the value of 4.
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Fig. 5. Quadrilateral boundary element and its local coordinates.

After substituting Egs. (17) and (18) into Eq. (14) and applying the boundary condition given in
Eq. (11), the unknown potential function values can be determined from the following set of algebraic
equations:

NI’ ni

Np ni
b+ > Y ¢i///Nijq*dS =>> ui/.n,-/.//N,]qﬁ*dS , k=1,2,...,m, (19)
AS; AS;

i=1 j=1 i=1 j=1

where m and N, denote the numbers of nodal points and hydrodynamic panels used in the discretization
of the structure. ¢; and w; represent, respectively, the potential value and displacement vector for the jth
nodal point of the ith hydrodynamic panel. n; is the number of nodal points assigned to the ith hydrodynamic
panel.

2.2.3. Calculation of generalized fluid— structure interaction forces
Using Bernoulli’s equation and neglecting the second-order terms, the dynamic fluid pressure on the elastic
structure due to the rth in-vacuo modal vibration becomes

0P,

o’
where pyis the fluid density. Substituting Eq. (10) into Eq. (20), the following expression for the pressure is
obtained:

Pr(x’y’ Z, t) = _,Df (20)

P(x,y,z,1) = pfw2¢,(x, Y, 2)po, €. (21)

The kth component of the generalized fluid—structure interaction force due to the rth modal in-vacuo
vibration of the elastic structure can be expressed in terms of the pressure acting on the wetted surface of the
structure as

Zyy = //P,,(x, v, z, HyndS
Sw

= P, € //pwa(f),ukn ds. (22)

Sw

The generalized added mass, Ay, term, can be defined as
Akr = pf ﬂ(ﬁﬂl/ﬁl ds. (23)
Sw

Therefore, the generalized fluid—structure interaction force component, Z,, can be written as

Zir(t) = Ao’ po, €' = — App, (0). (24)
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2.2.4. Calculation of wet frequencies and mode shapes

It should be noted that, in the case when a body oscillates in or near a free surface, the hydrodynamic
coefficients exhibit frequency dependence in the low-frequency region, but show a tendency towards a
constant value in the high-frequency region. In this study, it is assumed that the structure vibrates in the high-
frequency region so that the generalized added mass values are constants and evaluated by use of Eq. (23).
Hence, the generalized equation of motion for the dynamic fluid—structure interaction system (see, e.g.,
Ref. [28]), assuming free vibrations with no structural damping, is

[—w*(a+A)+clp =0, (25)

where a and ¢ denote the generalized structural mass and stiffness matrices, respectively. The matrix A
represents the infinite frequency generalized added mass coefficients.

Solving the eigenvalue problem, expressed by Eq. (25), yields the wet frequencies and associated wer mode
shapes of the structure in contact with fluid. To each wet frequency w,, there is a corresponding wet
eigenvector po, = {ps1, P2, -..»Prm}- The corresponding uncoupled wet mode shapes for the structure partially
and totally in contact with fluid are obtained as

Nu
ﬁr(x9y9 Z) = {ara 5)‘7 "-}r} = Zuj(xay, Z)pyjja (26)
=1

where u(x,y,z) = {u;,v;,w;} denotes the in vacuo mode shapes of the dry plate structure resting on an elastic
foundation and N,, the number of modes included in the analysis. It should be noted that the fluid—structure
interaction forces associated with the inertial effect of the fluid do not have the same spatial distribution as
those of the in vacuo modal forms. Consequently, this produces a hydrodynamic coupling between the in vacuo
modes of the plate structure with the elastic foundation. This coupling effect is introduced into Eq. (25)
through the generalized added mass matrix A.

3. Numerical results

A series of calculations have been performed in order to demonstrate the applicability of the method of
analysis to vibrating plate structures resting on an elastic foundation and partially in contact with a quiescent
fluid. A schematic view of the foundation—structure—fluid interaction system is shown in Fig. 1. The plate
chosen is L = 10 m long, a = 10 m wide and /2 = 0.15m thick. The plate structure under investigation is made
of concrete and has the following material characteristics: Young’s modulus E; = 25 GPa, Poisson’s ratio
v, = 0.15 and mass density p, = 2400kg/m>. For the numerical study, the plate was assumed to be either
simply supported or clamped along its four edges.

In this study, the calculations were performed separately for three different soil types: clay with Young’s
modulus E; = 50 MPa, Poisson’s ratio vy = 0.45 and soil stiffness k= 15 MN/m? (weak foundation); sand and
gravel with E = 200MPa, v,=0.25 and k,= 150 MN/m® (medium hard foundation); and shale with
E;= 2500 MPa, v;= 0.2 and k;= 2000 MN/m’ (hard foundation). Furthermore, it was assumed that the
structure was resting on a Pasternak-type foundation and partially in contact with fresh water with a density
of 1000 kg/m? (see Fig. 1).

The mode shapes of rectangular plate structures may be identified with two integers, such as 7 and j. These
integers, i and j, are considered as the number of half-waves along the length and width of the plate structure,
respectively, and a combination of i/ and j forms a particular mode shape.

3.1. Idealization and convergence

The in vacuo dynamic characteristics (natural frequencies and associated mode shapes) of the plate structure
resting on a Pasternak foundation were obtained by using the aforementioned mixed finite element analysis.
The plate finite element PLTVE4 [5] was adopted in this study, and it is an isoparametric conforming C° class
element having four corner nodes and at each node four degrees of freedom are present (one transverse
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Table 1
Convergence of dry natural frequencies (Hz) for a plate structure resting on a hard foundation (shale) and clamped along its edges

Mode (i) 64 elements 144 elements 256 elements 400 elements
1,1 394.3 394.3 394.3 394.3

1,2 423.0 422.1 421.8 421.8

2,1 423.0 422.1 421.8 421.8

2,2 449.9 448.2 447.8 447.6

3,1 471.4 466.8 465.4 464.8

1,3 471.4 466.8 465.4 464.8

23 495.8 490.8 489.2 488.6

32 495.8 490.8 489.2 488.6

4,1 540.4 527.2 522.8 520.9

1,4 540.4 527.2 522.8 520.9

Table 2

Convergence of dry natural frequencies (Hz) for a plate structure resting on a weak foundation (clay) and simply supported along its edges
Mode (i,)) 64 elements 144 elements 256 elements 400 elements
1,1 36.34 36.29 36.29 36.29

1,2 42.63 42.38 42.28 42.23

2,1 42.63 42.38 42.28 42.23

2,2 49.07 48.62 48.47 48.37

3,1 54.56 53.35 52.95 52.75

1,3 54.71 53.40 52.95 52.75

2,3 61.15 59.79 59.29 59.09

32 61.15 59.79 59.29 59.09

4,1 74.44 70.36 68.95 68.30

1.4 74.44 70.36 68.95 68.30

displacement, two bending moments and one torsional moment). Therefore, a total number of 16 degrees of
freedom are assigned to each element.

A series of calculations were performed in order to test the convergence of the finite element calculations
(natural frequencies and associated mode shapes). The results of the finite element convergence test studies are
presented in Tables 1 and 2 for two different edge conditions and foundation types. Table 1 presents the
natural frequencies of the plate structure resting on a hard foundation (shale) and clamped along its edges, and
Table 2 those of the plate structure resting on a weak foundation (clay) and simply supported along its edges.
In the tables, the results are presented for four different finite element idealizations. In the first group of
idealizations, the distributions over the plates consist of eight equally spaced elements along the length and
width of the plate structure. Therefore, a total number of 64 elements were distributed over the plate. To test
the convergence of the calculated dynamic properties, the number of elements over the plate was increased first
to 144 (12 elements along the length and width) and then to 256 (16 elements along the length and width). In
the final test of idealizations, the number of elements was increased to 20 along the length and width of the
plate, and therefore a total number of 400 elements were distributed over the structure in this final idealization.
The differences in the results presented in Tables 1 and 2 indicate that the calculated natural frequency values
are converging with increasing number of elements. It can be observed from Table 2 that, for the plate
structure resting on a weak foundation (clay) with simply supported edges, all the natural frequency values are
converged satisfactorily for the last two idealizations. On the other hand, for the plate on a hard foundation
(shale) with clamped edges, the differences between the last two idealizations are considerable small for the
mode shapes presented, as seen from Table 1. The results of the final idealizations (400 elements) were adopted
for the in vacuo dynamic properties of the plate—foundation system. It should also be noted that the in vacuo
dynamic characteristics (mode shapes, etc.) are scaled to a generalized mass of 1 kgm?.



B. Ugurlu et al. | Journal of Sound and Vibration 317 (2008) 308-328 319

Table 3
Convergence of wet natural frequencies (Hz) for a plate structure resting on a hard foundation (shale) and clamped along its edges
(submerging depth ratio, H/L = 1.0)

Mode (i,)) 64 panels 144 panels 256 panels 400 panels
1,1 126.1 126.5 126.7 126.9
1,2 170.4 172.1 172.7 173.1
2,1 175.2 177.1 177.8 178.2
2,2 203.6 207.4 208.8 209.5
1,3 217.1 220.7 222.0 222.7
3,1 222.4 226.7 228.2 228.9
2,3 241.1 247.7 250.0 251.1
3,1 242.9 249.9 252.3 2534
1.4 268.5 274.8 276.7 277.7
4,1 272.1 279.8 282.0 283.1
Table 4

Convergence of wet natural frequencies (Hz) for a plate structure resting on a weak foundation (clay) and simply supported along its edges
(submerging depth ratio, H/L = 0.5)

Mode (i,)) 32 panels 72 panels 128 panels 200 panels
1,1 16.47 16.47 16.46 16.46
1,2 21.34 21.45 21.48 21.48
2,1 29.02 29.19 29.19 29.19
2,2 31.96 31.20 30.90 30.75
1,3 36.62 36.15 35.90 35.77
3,1 40.53 40.58 40.44 40.36
23 41.35 41.16 41.05 40.99
3,1 44.22 44.34 44.18 44.07
1,4 47.41 47.16 47.02 46.93
4,1 58.50 55.63 54.45 53.88

To test the convergence of the boundary element calculations (hydrodynamic predictions), various numbers
of hydrodynamic panels (boundary elements) were distributed over the wetted surface of the plate. The main
aim of this exercise was to represent accurately the distortional mode shapes of the wetted surface area of the
plate. The results of the wet convergence studies are given in Tables 3 and 4, respectively, for the plate resting
on the hard (shale) and weak (clay) foundations. The results in Tables 3 and 4 are calculated, respectively, for
the submerging depth ratios H/L = 1 and 0.5. Furthermore, for the results presented in Tables 3 and 4, the
plate structure is, respectively, clamped and simply supported along all its edges. Four different idealizations
were considered over the wetted surface of the plate structure. The hydrodynamic panels were distributed over
the wetted surface as follows: one structural element (finite element) corresponding to one hydrodynamic
panel. Therefore, the same number of hydrodynamic panels and structural elements were adopted for the
wet results presented for the submerging depth ratio H/L = 1 in Table 3. Therefore, 64, 144, 256 and 400
hydrodynamic panels were distributed over the wetted surface, respectively, for four idealizations considered
in Table 3. It can be observed from the table that the wet frequency values converge with increasing number of
hydrodynamic panels. The frequency values of the final idealization (400 panels) may be assumed as
reasonably converged. For the plate simply supported along its edges with the submerging depth ratio
H/L = 0.5 and resting on a weak foundation (clay), 32, 72, 128 and 200 hydrodynamic panels were distributed
over the wetted surface separately for four different idealization. For these idealizations the hydrodynamic
panels are distributed along the length and width, respectively, as follows: 4 and 8 (32 panels); 6 and 12
(72 panels); 8 and 16 (128 panels); and 10 and 20 (200 panels). It can be observed from Table 4 that the wet
frequencies are converging fast with increasing number of hydrodynamic panels. The differences between the
last two idealizations (128 and 200 hydrodynamic panel idealizations) are reasonably small for all the modes
given in Table 4. For all the results presented in this study, 80, 160, 240, 320 and 400 hydrodynamic panels
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were adopted for the plate with the submerging depth ratios, H/L = 0.2, 0.4, 0.6, 0.8 and 1, respectively. On
the other hand, an additional convergence study was also carried out to establish the number of distortional
modes needed for the predictions. As a result of this analysis, 40 in vacuo modes were included in the
calculations presented in this study.

3.2. Numerical calculations

By solving the eigenvalue problem, Eq. (25), the uncoupled modes and associated frequencies of the plate
resting on a foundation and partially submerged in a quiescent fluid were obtained for two different edge
support conditions, i.e., simply supported and clamped edge conditions. It should be mentioned that the finite
element method adopted in this study was successfully employed before and verified with the analytical results
found in the literature (see Ref. [5]). On the other hand, the fluid—structure interaction approach used was also
successfully employed for the problems of fluid-containing shell structures and also for cantilever plates
partially submerged in fluid (see, for example, Ref. [15,23]). Unfortunately, for this study, there is no result
available for comparison purposes. It is expected that the results presented here may serve as a benchmark for
future studies on the subject. Furthermore, the non-dimensional frequency values presented in Tables 5 and 6
are calculated according to the following expression: Q = wa*(p,h/D)"?, where w is the circular frequency in
Hz and D the flexural rigidity and defined as D = Eh*/12(1—v%). a, h and p; are, respectively, the width,
thickness and density of the plate considered.

The calculated non-dimensional dry and wet natural frequencies are presented in Table 5 for the plate
structure with or without a foundation and partially in contact with fresh water. The effects of various
foundation types were considered, and the results are presented for weak (clay), medium hard (sand and
gravel) and hard (shale) foundations, and for simply supported edge conditions. As can be observed from
Table 5, the non-dimensional natural frequency values are given for the submerging depth ratios, H/L = 0,

Table 5
Non-dimensional frequency values for a plate structure simply supported along its edges
Mode (ij) H/L Mode (ij) H/L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
No foundation Weak foundation
1,1 3.169  3.064 2196 1496 1.173 1.036 1,1 25.67 22.63 1346 10.49 9.098 8.315
2,1 7.902 7.092 5708 5.174 3926 3.337 2,1 29.88 26.86 25.62 18.38  14.49 12.63
1,2 7.902  7.622 5382 4.058 3484 3261 1,2 29.88 2638 1696 14.12 1290 12.29
2,2 12.68  11.40 9974 8746  6.777 5942 22 3422 31.05 2959 21.83 17.83 16.03
3,1 1595 1380 12.57 10.57 9.410 7.848 3,1 37.32 3334 2982 2816 21.82 18.36
1,3 1599 1525  10.65 8.750 7951 7.623 1,3 37.32 32,68 2247 19.63 18.42 17.84
3,1 20.69  18.10 16.68 1447 12,66 10.72 32 41.80 37.70 3391 32.07 2523 21.67
2,3 20.69 18.64 1752 1457 11.74 10.63 23 41.80 38.41 3633 2742 2329 21.47
4,1 27.52 2421 2136 1932 17.66 1491 4.1 4832 4374 3932 34.62 31.62 26.22
1.4 27.52 2566 1831 1596 15.00 14.62 14 4832 4180 3045 2743  26.23 25.70
Medium hard foundation Hard foundation
1,1 76.48 5746  36.68 30.01 26.65 2459 1,1 278.8  203.2 1325 109.0 96.93 89.51
2,1 82.14 7733 62777 4626 38.85 34.68 2,1 2979  281.3  219.5 1655 1403 125.7
1,2 82.14 6276 4322 3759 3505 33.68 1,2 297.9 2202 1552 1358 1269 122.0
2,2 87.66 8298 67.81 S51.71 44.64 4099 22 3159 3003 2195 1837  160.2 147.6
3,1 91.47 8520 79.06 6548 51.82 4502 3,1 3279 306.8 2862 2277 184.0 161.3
1,3 91.47 70.71 5192 47.11 4486 4377 1,3 3279 2445 184.0 168.3  160.5 156.8
3,2 96.85 90.69 84.61 69.89 56.79 50.19 3.1 3444 3244 3046 2422 200.0 178.4
23 96.85 9227 7529  59.59 5299 49.72 23 3444  330.1 256.1 208.6 187.6 176.8
4,1 104.5 97.58 9026 8224 67.11 56.74 4,1 367.0 344.6 3179 288.8 2324 199.3

1.4 104.5 81.96 6289 5835 5645 55.62 14 367.0  278.0 2183  204.1 198.1 195.4




B. Ugurlu et al. | Journal of Sound and Vibration 317 (2008) 308-328 321

Table 6
Non-dimensional frequency values for a plate structure clamped along its edges

Mode (ij) H/L Mode (i,j) H/L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

No foundation Weak foundation
1,1 5730  5.674 4202 2747 2157 1.948 1.1 2642 2543 14.84 11.18 9.57 8.75
2,1 11.75 11.18 8.590  7.606 5754 5101 2,1 31.65 2894  27.13 19.77 15.39 13.61
1,2 11.75 11.60 8254  6.109 5282 5023 1.2 31.65 30.26 18.88 15.37 13.95 13.34
2,2 17.27 16.34 13.84 11.84 9.164  8.300 22 36.85 33.82 32.04 2382 19.30 17.57
3.1 21.26 19.10 16.78 14.47 12.31 10.64 3,1 40.55 36.23 32,50 2997 2343 20.21
1,3 21.36  20.89 14.42 11.76 10.71 10.27 1,3 40.59 38.10 2516  21.71 20.30 19.67
32 2649 2385 2143 18.94 15.96 13.94 32 45.64  41.18 37.23 3480 2733 23.95
2,3 2649 2481 22.78 18.51 14.97 13.85 23 45.64 4217  40.17  30.47  25.55 23.79
4,1 34.54 3029 26.84 2421 21.89 18.80 4,1 5333 47.79 3420  38.03 3438  29.11
1.4 3454 3328 2321 20.08 18.90 18.49 1.4 5333  48.85 4298 30.57 29.19  28.65

Medium hard foundation Hard foundation
1,1 76.91 6223 3795 30.67 27.12  25.01 1,1 279.0  205.8 133.2 109.3 97.20  89.75
2,1 83.17 77.88 6539 47.51 39.59 3542 2,1 2984  281.6 2209 166.2 140.7 126.1
1,2 83.17 67.84 4482  38.63 3593 34.53 1,2 298.4 2229 156.0 136.3 127.4 122.5
2,2 89.27  84.11 70.87 5332 4578 4214 22 316.7  300.8  236.6 184.5 160.8 148.2
3.1 93.43 86.52 7990 67.47 5297 4629 3.1 328.8 307.5 286.6 2288 184.7 162.0
1,3 93.43 76.28 54.01 48.66  46.27  45.14 1,3 328.8 2474 185.1 169.1 161.3 157.5
32 99.30  92.57 86.00 72.34  58.21 51.83 32 3457 3253 305.3 2435  200.8 179.3
2,3 99.30 9430 78.74  61.71 54.68 5144 23 3457  331.1 2579  209.8 188.5 177.7
4,1 107.7 99.98  92.51 8390 68.82 58.75 4,1 368.5 3458 319.3 289.8 2332 2003
1,4 107.7 88.44  65.65 60.65 58.72 57.78 1.4 368.5  281.5 219.7 2053 199.2 196.5

0.2, 0.4, 0.6, 0.8 and 1, and the lowest non-dimensional frequency values are obtained for the plate with no
foundation. It can also be realized that the wet frequencies increase with increasing hardness of foundation for
a specific mode shape and submerging depth ratio. For instance, for the first mode shape (i=1, j=1) and
submerging depth ratio H/L = 0.4, the non-dimensional wet frequency of the plate structure takes on the
values of 13.46, 36.68 and 132.5, respectively, for the weak, medium hard and hard foundation types. On
the other hand, it can be seen that the frequencies decrease with increasing submerging depth, and therefore
the lowest frequency values were obtained for the submerging depth ratio H/L = 1.

The calculations were repeated for clamped edge conditions, and these results are presented in Table 6. By
comparing the non-dimensional frequency values in Tables 5 and 6, it can be observed that all the frequencies
of the plate structure with clamped edges are higher in comparison with the corresponding ones of the plate
with simply supported edges. Meanwhile, the observations made previously for the plate with simply
supported edges can also be repeated here for the plate with clamped edges. That is to say, the frequency
values increase with increasing hardness of the foundation, and that they decrease with increasing submerging
depth ratio.

Tables 7 and 8 show the calculated generalized added masses for the plate structure, respectively, with
simply supported and clamped edges. Those results presented in Tables 7 and 8 are the generalized added mass
parameters, Ay, and they are defined as Ay, = Ak,l(pfa/ ph) x 100, where Ay, is the kth generalized added
mass term due to the vibration in the rth in vacuo mode. The added mass parameters for the first eight
distortional in vacuo modes are presented for the submerging depth ratios H/L = 0.2, 0.6 and 1.0, and for
weak, medium hard and hard foundation types. The added mass values correspond to a generalized structural
mass of 1 kgm?. Here, it is assumed that the structure preserves its in vacuo principal mode shapes in the fluid
and that each mode gives rise to the surface pressure distribution of the flexible structure. However, the
hydrodynamic forces associated with the inertial effect of the surrounding fluid medium do not necessarily
have the same spatial distribution as those of the in vacuo principal modes. Consequently, this produces



Table 7

Generalized added mass parameters of a plate structure simply supported along its edges

Mode (i)  Weak foundation

Medium hard foundation

Hard foundation

11 2.1 12 2.2 3.1 13 32 2,3 11 2.1 12 2.2 3.1 13 32 23 11 2.1 12 22 3.1 13 32 23
H/L =02 H/L=02 H/L=02
11 0236 0438 —0.005  0.000 0405 0410 0000 —0.005 023 043 0042 0000 —0.405 —0410 0000 0006 0236 —0433 0067 0000 0406 —0411 —0.001 0.007
2,1 0438 0812 —0.006 0004 0753 0762 —0005 —0.010 0436 0807 0057 —0038 —0.750 —0.759 —0.050 0011 —0433 0799 —0.091 —0.061 —0.744 0754 0.8l 0.002
1.2 —0.005 —0.006 0214 0397 —0.008 —0.008 —0.521 —0.028 0042 0057 0220 039 —0.072 —0073 0521 0.004 0067 —0.091 0229 —039%  0.116 —0.117 0509  0.097
22 0.000 0004 0397  0.735 0000 0000 —0967 —0.051 0000 —0038 039 0737 0000 0000 0971 0.005 0000 —0061 —0394 0739 0000 0000 —0956 —0.178
3.1 0405 0753 —0.008 0000 0797 0612 —0013 0244 —0405 —0.750 —0.072  0.000  0.797  0.612 —0.001 0243 0406 —0.744 0116 0000 0797 —0.612  0.044 —0.238
13 0410 0762 —0.008 0000  0.612 0813 0014 —0261 —0410 —0.759 —0.073 0000 0612 0815 0001 —0.265 —04ll 0754 —0.117 0000 —0.612 0816 0049 —0.263
32 0.000 —0.005 —0.521 —0967 —0.013  0.014 1278 0033 0000 —0.050  0.521 0971  —0.001 0.001 1.281 0.003  —0.001 0.081 0.509 —0956  0.044  0.049 1262 0.111
2,3 —0.005 —0.010 —0.028 —0.051 0.244  —0.261 0033 0664 0006 0011 0.004 0005 0243 —0265 0003  0.665 0007 0002 0097 —0.178 —0238 —0263  O0.111 0.688
H/L =06 H/L=0.6 H/L=0.6
11 11.52 9405 —0.100  0.000  0.138 1187 0040 —0.752  11.52 9364 0900  0.000 —0.138 —1.187 —0.004 0749 1152  —9.297 1444 0000 0138 —1.188 —0.137  0.735
2.1 9405 1038  —0.021 0067 2956 4009 0044 —0.795 9364 1037 0.191 —0.608 —2942 —3992 0009 0793 —9297 1034  —0304 —0975 —2920 3965  0.123 —0.779
1.2 —0.100  —0.021 8378 6347 —0.031 —0.043  0.143 0016 0900  0.191 8397 6321 —0283 —0384 —0.142  0.075 1444  —0304 8426 —6276 0453 —0616 —0.160  0.095
22 0.000 0067 6347  7.136 0000 0000 —338 —0.180  0.000 —0.608  6.321 7138 0000 0000 3392 0018 0000 —0975 —6276  7.139  0.000 0000 —3.336 —0.620
3.1 0.138 2956 —0.031 0000 6544 0356 —0.161 3038 —0.138 —2942 —0283 0000 6544 0356 —0.016  3.039  0.I38 —2920 0453 0000  6.544 —0357 0555 —2.986
13 1187 4009 —0.043 0000 035  7.148  0.189 —3.569 —1.187 —3.992 —0.384 0000 0356  7.149 0019 —3.579 —1.188 3965 —0616 0000 —0357  7.50  0.655 —3.523
32 0.040 0044  0.143 —338 —0.161 0189 5933 0029 —0.004 0009 —0.142 3392 —0016 0019 593 0003 —0.137  0.I23 —0.160 —3.336 0555  0.655 5920  0.097
23 0752 —0.795 0016 —0.180  3.038 —3569 0029 5394 0749  0.793 0075 0018  3.039 —3579 0003 5394 0735 —0779 0095 —0.620 —298 —3.523  0.097 5413
H/L=10 H/L=10 H/L=10
11 29.99 2942 —0.031 0000 —0822 3857 0036 —0.684  30.00 2.931 0282 0000 0822 —385 —0.004  0.68 3000 —2910 0452 0000 —082 —3856 —0.126  0.678
2.1 2942 16.83 0.007 0007 0619 1593 0042 —0910 2931 1684  —0.064 —0063 —0.616 —1587 —0.057 0906 —2910 1685 0102  —0.101 —0.612 1577 0247  —0.870
12 —0.031 0.007 1750 0656 —0.007 —0.017 —0.547 —0.019 0282 —0.064 17.50 0.655 —0059 —0.153 0545 0090 0452  0.102 1749  —0.651 0.095 —0245 0508 0237
22 0.000 0007  0.656  12.80 0.000 0000 —0.568 —0.030 0000 —0063  0.655 12380 0.000 0000 0570  0.003 0000 —0.101 —0.651 1280 0.000 0000 —0.562 —0.104
3.1 —0.822 0619 —0.007 0000 1155  —0443 —0.002  0.046 0822 —0.616 —0.059 0000 1155 —0443 0000 0046 —0.822 —0.612 0095 0000 11.55 0443 0.008 —0.045
1.3 3.857 1593 —0.017  0.000 —0.443 1250 0023 —0437 —3856 —1.587 —0.153 0000 —0443 1250 0.002 —0440 —3.856 1577 —0245  0.000 0443  12.50 0.081  —0.434
32 0036 0042 —0547 —0.568 —0002 0023  9.823 —0015 —0.004 —0.057 0545 0570 0000 0002  9.824 —0001 —0.126 0247 0508 —0.562  0.008  0.081 9.836  —0.049
23 —0.684 —0910 —0.019 —0.030 0046 —0437 —0.015  10.10 0.688 0906  0.090 0003 0046 —0440 —0.001  10.10 0678 —0870 0237 —0.104 —0.045 —0434 —0.049  10.09




Table 8
Generalized added mass parameters of a plate structure clamped along its edges

Mode Weak foundation Medium hard foundation Hard foundation
(.))
11 12 2,1 22 3.1 13 23 3.2 11 12 2,1 22 3.1 13 23 3.2 1,1 12 2,1 2,2 3.1 13 23 32
H/L=02 H/L=02 H/L=02
1,1 0.113 —0.013  0.222  0.000  0.223  0.226 —0.002  0.000 0.163 —0.019 0308  0.000 0.296  0.300 —0.005  0.000 0.223 —0.013  0.415 0.000 0.386  0.391 —0.006 —0.002
1.2 —0.013 0.111 -0.019 -0.214 —-0.026 —0.026 —0.004 —0.302 —0.019 0.153 —0.026 —0.285 —0.034 —0.035 0.027 —0.386 —0.013 0.204 —0.018 0.378 —0.023 —0.023 0.179 —0.466
2,1 0222 —0.019  0.437 —0.013 0439 0447 -0.006 -0.018 0.308 —0.026  0.583 —0.017  0.559  0.567 —0.008 —0.024 0.415 —-0.018  0.771 0.012 0718  0.728 —0.006 —0.019
2,2 0.000 -0.214 —0.013  0.418  0.000  0.000  0.009  0.592 0.000 —0.285 —0.017  0.539  0.000  0.000 —0.051 0.731 0.000 0378  0.012 0.702  0.000  0.000 0.332 -0.867
3,1 0.223 —0.026  0.439  0.000 0494 0397  0.137 —0.002 0.296 —0.034  0.559  0.000 0.607 0475 0.175  0.012 0386 —0.023  0.718  0.000 0.763  0.587  0.215  0.082
1,3 0.226 —0.026 0.447 0.000 0.397 0.516 —0.158 0.002 0.300 —0.035 0.567 0.000 0.475 0.624 —0.197 —0.014 0.391 —0.023 0.728 0.000 0.587 0.781 —0.238 —0.091
2,3 —0.002 —0.004 —0.006 0.009 0.137 —0.158 0.403 0.007 —0.005 0.027 —0.008 —0.051 0.175 —0.197 0.500 —0.035 —0.006 0.179 —0.006 0.332 0.215 —0.238 0.712 —0.199
32 0.000 —-0.302 —0.018  0.592 —0.002  0.002 0.007  0.842 0.000 —0.386 —0.024  0.731 0.012 —0.014 -0.035  0.996 —0.002 —0.466 —0.019 -0.867  0.082 —0.091 —0.199 1.154
H/L=0.6 H/L=0.6 H/L=0.6
1.1 11.02  —-0.515 8.742 0.000 —0.024 1.221 —0.809 0.012 11.25 —0.554 9.049 0.000 0.046 1.162 —-0.774 —0.054 1148 —0.293 9.347 0.000 0.123 1.180 —0.702 —0.269
1,2 —0.515 8.052 —-0.099 -5907 -0.162 —-0.237 0.056 0.207 —0.554 8.195 —0.112 —6.099 -—0.174 —-0.242 0.037 0.196 —0.293 8.349 —0.062 6.308 —0.092 —0.125 —-0.031 0.150
2,1 8.742 —0.099  9.734 —-0.348 2754  4.028 —0.892  0.026 9.049 —0.112 10.01 —0.374  2.834 3952 —0.828 —0.046 9.347 —0.062 10.32 0.197 2934 3997 -0.749 —0.282
2,2 0.000 —5907 —0.348  6.722  0.000  0.000  0.050  3.294 0.000 —6.099 —0.374  6.894  0.000  0.000 —0.229  3.305 0.000 6308  0.197  7.097  0.000  0.000 1.210 —3.154
3,1 —0.024 —0.162 2.754 0.000 6.319 0.329 2.814 —0.043 0.046 —0.174 2.834 0.000 6.404 0.340 2.907 0.202 0.123  —0.092 2.934 0.000 6.519 0.354 2.816 1.080
1.3 1.221 —-0.237 4.028 0.000 0.329 7.004 —3.474 0.053 1.162 —0.242 3.952 0.000 0.340 7.029 —3.485 —0.242 1.180 —0.125 3.997 0.000 0.354 7.127 -3.329 —1.277
23 —0.809 0.056 —0.892 0.050 2814 —-3.474 5.176 0.008 —0.774 0.037 —-0.828 —0.229 2907 —3.485 5.249 —0.039 —0.702 —0.031 —0.749 1.210 2816 —3.329 5438 —0.183
32 0.012 0207  0.026 3294 —0.043 0.053  0.008  5.737 —0.054  0.196 —0.046  3.305 0202 -0.242 -0.039 5811 —0.269  0.150 —0.282 —3.154 1.080 —1.277 —0.183  5.846
H/L=10 H/L=10 H/L=1.0
1,1 2848 —0.135 2.287 0.000 —0.613 4.810 —0.641 0.010 29.23  —0.157 2.565 0.000 —0.694 4.247 —0.652 —0.045 29.87  —0.090 2.878 0.000 —0.798 3913 —0.638 —0.245
1,2 —0.135  16.49 0.029 —0.446 —0.026 —0.080 0.050 —0.852 —0.157  16.94 0.035 —0.527 —-0.031 —0.087 0.108  —0.695 —0.090 17.41 0.020 0.634 —0.019 —0.049 0.233  —0.526
2,1 2287 0.029 1599 —-0.026  0.435 1.360 —1.062 —0.034 2.565  0.035 1638 —0.032  0.503 1.427 -0.962 —0.110 2.878  0.020 16.76 0.020  0.597 1.562 —0.852 —0.346
2,2 0.000 —0.446 —0.026 12.18 0.000  0.000  0.006  0.393 0.000 —0.527 —0.032 12.45 0.000  0.000 —0.031 0.452 0.000  0.634  0.020 12.74 0.000  0.000 0.196 —0.512
3,1 —0.613 —0.026 0.435 0.000 11.01 —0.367 0.001 0.000 —0.694 —0.031 0.503 0.000 11.23  —0.387 0.017 0.001 —0.798 —0.019 0.597 0.000 11.50 —0.432 0.038 0.014
1.3 4.810 —0.080 1.360 0.000 —0.367 1245 —0.418 0.006 4.247 —0.087 1.427 0.000 —0.387 12.36 —0.409 —0.028 3913 —0.049 1.562 0.000 —0.432 1247 —0.406 —0.156
23 —0.641 0.050 —1.062 0.006 0.001 —0.418 9.705 —0.003 —0.652 0.108 —0.962 —0.031 0.017 —0.409 9.847 0.016 —0.638 0.233  —0.852 0.196 0.038 —0.406 10.02 0.089
32 0.010 —0.852 —0.034  0.393  0.000 0.006 —0.003  9.498 —0.045 —0.695 —0.110 0452  0.001 —0.028  0.016  9.622 —0.245 —0.526 —0.346 —-0.512  0.014 —0.156  0.089  9.826
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Fig. 6. Mode shape (i = 1, j = 2) for a plate simply supported along its edges. No foundation: (a) H/L = 0.0; (b) H/L = 0.6. Medium
hard foundation (sand and gravel): (c) H/L = 0.0; (d) H/L =0.2; (e) H/L =0.4; (f) H/L =0.6; (g) H/L =0.8; (h) H/L = 1.0.

hydrodynamic coupling between the in vacuo modes. As can be seen from Tables 7 and 8, there is strong
hydrodynamic coupling between some of the in vacuo modes. It can also be observed from Tables 7 and 8 that
the generalized added mass matrices are symmetric and the cross-coupling terms are generally small in
comparison with the diagonal ones. On the other hand, it can be realized that the coupling effects generally
become stronger for small submerging depths. For instance, the ratios of the cross-coupling terms to
corresponding diagonal terms are mainly larger for the submerging depth ratio H/L = 0.2 when compared
with the fully submerged plate (depth ratio H/L = 1.0).

Fig. 6 shows the mode shape (1, 2) for various submerging depths and simply supported edge
conditions. The calculations were performed for the plate structure with no foundation and medium hard
foundation (sand and gravel). For the case of no foundation, the mode shape (2, 1) is presented for the
submerging depth ratios H/L = 0.0 and 0.6 (see Figs. 6 (a) and (b)). Moreover, for those in Figs. 6 (c)—(h), the
plate structure was resting on the medium hard foundation with the submerging depth ratios, H/L, 0.0, 0.2,
0.4, 0.6, 0.8 and 1, respectively. As can be seen from Fig. 6 (b), the in vacuo mode shape is more or less
preserved when the plate is submerged with the depth ratio, H/L = 0.6. Furthermore, for the plate
with a medium hard foundation and lower depth ratios such as H/L = 0.2 and 0.4, the wet part of the plate
structure shows high levels of vibration. The larger area of the plate indulges into vibration as the depth ratio,
H/L, increases. For the fully submerged case, H/L = 1.0, the modal vibration form resembles like the
corresponding in vacuo modal form.
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Fig. 7. Mode shape (i = 2, j = 3) for a plate clamped along its edges. Weak foundation (clay): (a) H/L =0.0; (b) H/L =0.2; (c) H/
L =0.6; (d) H/L = 1.0. Hard foundation (shale): (e) H/L = 0.0; (f) H/L =0.2; (g) H/L = 0.6; (h) H/L = 1.0.

Fig. 7 presents the vibrational mode (2, 3) for the plate structure resting on the weak (clay) or hard
foundations (shale) and for the depth ratios, H/L = 0.0, 0.2, 0.6 and 1.0. All the edges of the plate structure
are considered as clamped. As can be seen from Fig. 7, the mode (2, 3) displays different vibrational patterns
for each depth ratio. However, it can be observed from the same figure that the in vacuo vibrational forms are
almost the same as the fully submerged case (H/L = 1.0). This is because the coupling between the in vacuo
modes for the fully submerged case is very weak, and therefore, the modal forms remain nearly unchanged. It
should also be noted that the frequencies of the plate structure increase with increasing hardness of the
foundation and they decrease with increasing submerging depth.

Furthermore, the calculations were repeated for the plate clamped along its edges and resting on a medium
hard foundation (sand and gravel). For these calculations, the depth ratio was taken as H/L = 0.5. In Fig. 8,
the first eight wer vibrational modal forms are presented. It can be seen from the figure that the part of the
plate in contact with water shows high levels of vibration. This is due to the inertial effect of the surrounding
water.

4. Conclusions

A method of analysis is presented for investigating the effects of elastic foundation and fluid on the dynamic
characteristics of elastic plate structures. A mixed-type finite element formulation was employed for the
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(@ ()

Fig. 8. Mode shapes of a plate structure resting on a medium hard foundation (sand and gravel) and clamped along its edges, for
submerging depth ratio, H/L = 0.5: (a) first mode (i = 1, j = 1); (b) second mode (i = 1, j = 2); (c) third mode (i = 1, j = 3); (d) fourth
mode (i = 2, j = 1); (e) fifth mode (i = 2, j = 2); (f) sixth mode (i = 1, j = 4); (g) seventh mode (i = 2, j = 3); (h) eight mode (i = 3, j = 1).

in vacuo analysis of the structure by using the Gateaux differential for the derivation of the functional for the
Kirchhoff plate—Pasternak-type elastic foundation interaction. For the calculation of the fluid—structure
interaction effects a boundary integral equation method was adopted together with the method of images in
order to impose an appropriate boundary condition on the fluid’s free surface.

From the results given in this study, the calculations based on the presented method behave as expected.
That is to say, the frequencies of the plate structure contacting an elastic foundation increase with increasing
hardness of the foundation, and the wer frequencies of the foundation—plate—fluid system decrease with
increasing area of contact with the fluid. The finite element and boundary element methods adopted in this
study were verified before in the open literature (see, for instance, Refs. [5-7,15,22,23]).

As can be seen from Tables 7 and 8, the generalized added mass parameters are symmetric, and off-diagonal
terms represent the effect of coupling between the in vacuo modes. It can also be concluded from Tables 7 and
8 that the coupling becomes stronger with decreasing submerging depth ratio.

The structural and fluid idealizations are independent and both depend on the complexity of the structure
and the convergence of the results. To test the convergence of the finite element and boundary element
methods, various numbers of finite elements and boundary elements were distributed over the plate structure.
The in vacuo dynamic characteristics obtained using the mix finite element formulation were adopted for the
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wet calculations. It can be realized from Tables 14 that the finite element and boundary element results
converge with increasing number of elements and hydrodynamic panels, respectively.

It can be observed from Figs. 68 that the wer part of the plate structure shows high levels of vibration
compared with the rest of the plate structure.

The present work has demonstrated the versatility of the method (finite element—boundary element
method) developed for the analysis of the foundation—plate—fluid interaction systems.
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