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Abstract

In this study, a method of analysis is presented for investigating the effects of elastic foundation and fluid on the

dynamic response characteristics (natural frequencies and associated mode shapes) of rectangular Kirchhoff plates. For

the interaction of the Kirchhoff plate–Pasternak foundation, a mixed-type finite element formulation is employed by using

the Gâteaux differential. The plate finite element adopted in this study is quadrilateral and isoparametric having four

corner nodes, and at each node four degrees of freedom are present (one transverse displacement, two bending moments

and one torsional moment). Therefore, a total number of 16 degrees-of-freedom are assigned to each element. A consistent

mass formulation is used for the eigenvalue solution in the mixed finite element analysis. The plate structure considered is

assumed clamped or simply supported along its edges and resting on a Pasternak foundation. Furthermore, the plate is

fully or partially in contact with fresh water on its one side. For the calculation of the fluid–structure interaction effects

(generalized fluid–structure interaction forces), a boundary element method is adopted together with the method of images

in order to impose an appropriate boundary condition on the fluid’s free surface. It is assumed that the fluid is ideal, i.e.,

inviscid, incompressible, and its motion is irrotational. It is also assumed that the plate–elastic foundation system vibrates

in its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to a corresponding surface pressure

distribution on the wetted surface of the structure. At the fluid–structure interface, continuity considerations require that

the normal velocity of the fluid is equal to that of the structure. The normal velocities on the wetted surface of the structure

are expressed in terms of the modal structural displacements, obtained from the finite element analysis. By using the

boundary integral equation method the fluid pressure is eliminated from the problem, and the fluid–structure interaction

forces are calculated in terms of the generalized hydrodynamic added mass coefficients (due to the inertial effect of fluid).

To asses the influences of the elastic foundation and fluid on the dynamic behavior of the plate structure, the natural

frequencies and associated mode shapes are presented. Furthermore, the influence of the submerging depth on the dynamic

behavior is also investigated.
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1. Introduction

Plate structures have been widely used in various engineering fields, and their dynamic response behaviors
are well studied and, therefore, a large number of publications can be found in the open literature (see, for
instance, [1,2]). However, when they are resting on an elastic foundation and/or are partially or fully in contact
with a fluid of comparable density, such as water, the foundation–structure and/or fluid–structure interaction
effects play significant roles in their response behaviors and alter the dynamic states of the structures from
those vibrating in the absence of fluid and foundation. Hence, the vibration behavior of the plate structures on
elastic foundation and/or in contact with fluid is of great importance in structural, aerospace, civil, mechanical
and marine engineering applications.

For the response behavior of elastic structures resting on an elastic foundation, a mechanical model is
required to predict the interaction effects between the structure and foundation. Various mechanical models
such as Winkler, Pasternak and Vlasov have been proposed in the open literature. The simplest mechanical
model was developed by Winkler [3], which is generally referred to as a one-parametric model. The transverse
deformation characteristics of the elastic foundation are defined by means of continuous and closely spaced
linear springs. For instance, Gupta et al. [4] investigated the buckling and vibrational behavior of polar
orthotropic circular plates resting on a Winkler-type foundation. The frequency values were calculated by
using the Ritz method. It was observed that the presence of an elastic foundation increases the frequency
values.

The deficiency of the Winkler formulation is the behavioral inconsistency due to the discontinuity of
displacements on the boundary of the uniformly loaded surface area, and, therefore, two-parameter models
were introduced. Among these models, the Pasternak formulation is the most popular one due to its
simplicity. The second parameter in this model serves to represent the shear interaction between the plate and
foundation. A number of pioneering finite element studies on static, dynamic and stability analysis of the
Kirchhoff plate-Pasternak foundation interaction problems were conducted by Omurtag et al. [5], Özc-elikörs
et al. [6] and Doğruoğlu and Omurtag [7]. The free vibration results of Omurtag et al. [5] were also confirmed
by the three-dimensional analysis of Zhou et al. [8]. Zhou et al. [8] determined the three-dimensional vibration
characteristics of thick rectangular plates resting on an elastic foundation using the Pasternak model. Their
analysis is based on the three-dimensional, small-strain, linear and exact elasticity theory, and the Ritz method
was used to derive the frequency equation of the plate–foundation system by augmenting the strain energy of
the plate with the elastic potential energy of the foundation. Eratlı and Aköz [9] solved the free vibration
problem of a Reissner plate on a Pasternak foundation. Dumir [10] studied the von-Kármán-type,
geometrically nonlinear, axisymmetric, static and transient responses of circular plates resting on a Pasternak
foundation by using the point-collocation method for the spatial discretization, and the step-increment
method for time. Shen et al. [11] investigated the free and forced vibration of the Reissner–Midlin plates with
four free edges and resting on a Pasternak foundation by including the thermal effects. For the solution, they
adopted the Rayleigh–Ritz method in conjunction with a set of admissible functions for satisfying both the
geometrical and the natural boundary conditions. On the other hand, Xiang et al. [12] derived the analytical
vibration and buckling solutions for simply supported, rectangular Mindlin plates on a Pasternak foundation.
Wang et al. [13] obtained the relationship between the natural frequencies of the Reddy and Kirchhoff
plates, with simply supported edge conditions. They also investigated the effects of initial stresses and
Winkler–Pasternak foundation on the relationship. Very recently, Yu et al. [14] studied the dynamic
responses of the Reissner–Mindlin plates resting on Winkler- and Pasternak-type elastic foundations. The
formulations are based on the Reissner–Mindlin first-order shear deformation plate theory and including the
plate–foundation interaction and thermal effects.

The fluid–structure interaction problems of plate structures partially or totally immersed in fluid have also
received much attention due to their importance in various engineering fields. For instance, Ergin and Uğurlu
[15] and Fu and Price [16] investigated the dynamic response characteristics (wet natural frequencies and
associated mode shapes) of cantilever rectangular plates partially submerged in fluid. They observed that the
frequency values of the plate structures decrease with increasing area of contact with fluid. Jeong et al. [17]
studied the wet resonance frequencies and associated mode shapes of two identical rectangular plates
coupled with a bounded fluid. The analytical method was developed by using a finite Fourier series expansion.
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The frequencies of the in-phase vibrational modes of the plate structures were predicted well, but those of the
out-of-phase vibrational modes could not be estimated precisely. On the other hand, Chang and Liu [18]
calculated the natural frequencies of a rectangular isotropic plate in contact with fluid, for various boundary
conditions. They observed that the wet modes were almost identical to the dry mode shapes. Meanwhile, the
free vibration of circular plates in contact with fluid has been studied by various researchers (see, for instance,
[19–21]).

Although a considerable amount of work dealing with the vibration of plate structures either resting
on a foundation or in contact with fluid has been found in the open literature, few have been reported
on the vibration of plates resting on an elastic foundation, and at the same time, in contact with
fluid. Therefore, in this study, a method of analysis is presented for investigating the effects of an
elastic foundation and fluid on the dynamic response characteristics (natural frequencies and associated
mode shapes) of rectangular Kirchhoff plates. A mixed-type finite element formulation is employed,
by using the Gâteaux differential for the derivation of the functional for the Kirchhoff plate–Pasternak-type
elastic foundation interaction. The plate finite element PLTVE4 [5] is adopted in this study. It is a
rectangular isoparametric-conforming C0 class element having four corner nodes, and at each node
four degrees of freedom are present (one transverse displacement, two bending moments and one
torsional moment). Therefore, a total number of 16 degrees of freedom are assigned to each element.
Since the functional does not have derivatives higher than first order, bilinear shape functions are used.
The plate structure considered in this study is assumed to be clamped or simply supported along
its edges and resting on a Pasternak foundation, and it is fully or partially in contact with fresh water,
as illustrated in Fig. 1. By a Pasternak-type elastic foundation modeling, the influence of shear between the
plate and foundation is inserted into the formulation by a shear layer besides the vertical spring elements (see
Fig. 2).

In this paper, for the calculation of the fluid–structure interaction effects, a boundary element method is
adopted together with the method of images, in order to impose an appropriate boundary condition on the
fluid’s free surface. The boundary element method presented in this study is already successfully applied to
structures partially filled or partially submerged in a quiescent fluid (see, for example, Refs. [22,23]). However,
the method is employed for a fluid–structure–foundation interaction problem (a rectangular plate structure in
contact with an elastic foundation on its one side, and partially or fully in contact with fluid on the other side)
for the first time (see Fig. 1). In this investigation, it is assumed that the fluid is ideal, i.e., inviscid,
incompressible and its motion is irrotational. It is also assumed that the plate structure resting on the elastic
elastic
foundation

fluid

x
h

L

plate

y

H
z

O

a

Fig. 1. Plate structure resting on a foundation and partially in contact with fluid.
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Fig. 2. Pasternak foundation: (a) shear layer element; (b) mechanical model.
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foundation vibrates in its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to
a corresponding surface pressure distribution on the wetted surface of the structure. The in vacuo dynamic
analysis entails the vibration of the elastic plate–foundation system in the absence of any external force and
structural damping, and the corresponding dynamic characteristics (e.g., natural frequencies and mode
shapes) of the system were obtained by using a mixed-type finite element formulation and the plate finite
element PLTVE4.

At the fluid–structure interface, continuity considerations require that the normal velocity of the fluid is
equal to that of the structure. The normal velocities on the wetted surface of the structure are expressed in
terms of the modal structural displacements, obtained from the finite element analysis of the plate–foundation
system. By using a boundary integral equation method the fluid pressure is eliminated from the problem, and
the fluid–structure interaction forces are calculated in terms of the generalized hydrodynamic added mass
coefficients (due to the inertial effect of fluid).

In this analysis, the wetted surface is idealized by using appropriate boundary elements, referred to as
hydrodynamic panels. The generalized structural mass matrix is merged with the generalized hydrodynamic
added mass matrix. Then, the total generalized added mass and stiffness matrices are used together
in solving the eigenvalue problem for the fluid–elastic plate–elastic foundation interaction problem.
To asses the influence of the elastic foundation and fluid on the dynamic behavior of the plate structure,
the natural frequencies and associated mode shapes are presented. Furthermore, the influence of the
submerging depth ratio and various foundation types on the dynamic behavior of the plate structure is also
investigated.
2. Mathematical model

2.1. Functional and mixed finite element formulation for foundation– plate interaction

2.1.1. Variational formulation

Before presenting the necessary steps for the mixed-type formulation based on the Gâteaux differential,
some principal variational definitions are given. Q is a potential operator (positive definite and self-adjoint), if
the equality hdQðy; ȳÞ; yni ¼ hdQðy; ynÞ; ȳi is satisfied, where dQðy; ȳÞ and dQðy; ynÞ are the Gâteaux
derivatives of the operator in ȳ and y* directions, respectively [24]. ȳ and y* are field variables in different
directions. Field equations can be written in an operator form as, Q ¼ Ly�f, where L is a differential
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operator, y is the field variable vector and f is the load vector. If the operator Q is potential the corresponding
functional for the field equations is obtained as follows:

IðyÞ ¼

Z 1

0

½Qðsy; yÞ; y�ds, (1)

where s is a scalar quantity.
2.1.2. Elastic foundation

The Pasternak model [25] is the most natural extension of the Winkler model [3], and it considers a shear
interaction between the spring elements by connecting the ends of the springs to a plate of an incompressible
shear layer (see Figs. 2 (a) and (b)), which deforms only due to transverse shears Vx and Vy:

V x ¼ Ḡ
qw

qx
and V y ¼ Ḡ

qw

qy
, (2)

where Ḡ is the shear modulus of the foundation continuum and w represents the deflection of the shear layer.
The coordinates x, y and z are shown in Fig. 3.

Recalling the lateral equilibrium in Fig. 3, the reaction–deflection relation of the shear layer and spring
elements is given by

pz ¼ kw� Ḡ
q2w
qx2
� Ḡ

q2w
qy2

, (3)

where pz is the intensity of the reaction force of the foundation. The first parameter k is the modulus of the
subgrade reaction of foundation. The last two terms on the right-hand side of equality (3) corresponds to the
shear interaction of the shear layer. As a special case, if we let Ḡ ¼ 0, the above equation directly converges to
a Winkler model.
2.1.3. Plate– foundation coupling

The positive directions of the coordinate axes (x,y,z), deflection w, bending moments K, M and
torsional moment T are depicted in Fig. 3. Considering the plate–foundation interaction, the complete
plate
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Fig. 3. Plate–elastic foundation interaction and positive directions of plates degrees of freedom.
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set of field equations becomes

�
q2K
qx2
�

q2M
qy2
� 2

q2T
qx qy

þ kw� Ḡ
q2w

qx2
þ

q2w
qy2

� �
� r

q2w
qt2
¼ 0

�
q2w
qx2
�

12

Eh3
ðK � uMÞ ¼ 0

�
q2w
qy2
�

12

Eh3
ðM � uKÞ ¼ 0

�2
q2w
qx qy

� 2ð1þ uÞ
12

Eh3
T ¼ 0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

, (4)

where E is the Young’s modulus and u is Poisson’s ratio and r and h represent the mass density and thickness
of the plate, respectively.

2.1.4. Functional

Using the Gâteaux differential and Eq. (1), a functional for the free vibration analysis of the Kirchhoff
plate–Pasternak foundation system was obtained by Omurtag et al. [5] as

I ¼

ZZ
qK

qx

qw

qx
þ

qM

qy

qw

qy
þ

qT

qy

qw

qx
þ

qT

qx

qw

qy

� �
dAþ

ZZ
�

6

Gh3
T2

� �
dA

þ

ZZ
�

6

Eh3
ðK2 þM2 � 2uKMÞ

� �
dA�

ZZ
1

2
rho2w2

� �
dA

þ

ZZ
1

2
Ḡ

qw

qx

qw

qx
þ

qw

qy

qw

qy

� �
þ

1

2
kw2

� �
dA�

Z
Ḡ

qw

qx
ðw� ŵÞdyþ

qw

qy
ðw� ŵÞdx

� �� �
�F

þ

Z
Ḡ

qŵ

qx
wdyþ

qŵ

qy
wdx

� �� �
sF

�

Z
qK̂

qx
þ

qT̂

qy

 !
wdyþ

qM̂

qy
þ

qT̂

qx

 !
wdx

" #( )
sP

�

Z
qK

qx
þ

qT

qy

� �
ðw� ŵÞdyþ

qM

qy
þ

qT

qx

� �
ðw� ŵÞdx

� �� �
�P

�

Z
ðK � K̂Þ

qw

qx
dyþ ðT � T̂Þ

qw

qx
dxþ ðM � M̂Þ

qw

qy
dxþ ðT � T̂Þ

qw

qy
dy

� �� �
sP

�

Z
K
qŵ

qx
dyþ T

qŵ

qx
dxþM

qŵ

qy
dxþ T

qŵ

qy
dy

� �� �
�P

, (5)

where the terms (y)s and (y)e represent the dynamic and the geometric boundary conditions, respectively.
The subscripts P and F refer to the plate and the foundation, respectively. The terms defined as ð ^� � �Þ are
valid if and only if the boundary conditions are known; otherwise, they disappear. o is the natural
circular frequency. The functional given in Eq. (5) is suitable for a mixed finite element formulation. Hence
y
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Fig. 4. Quadrilateral isoparametric finite element. Key: J, element nodes; +, Gauss points.
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a four-noded isoparametric quadrilateral element with a 2� 2 Gauss scheme is used throughout the numerical
analysis. As shown in Fig. 4 an arbitrary element Oe and master element Om are depicted. An invertible
transformation between them exists by means of the maps Te of Om onto Oe by the change of coordinates, and
similarly Te

�1 is the inverse map from Oe to Om. The nodal unknowns are the transverse displacement w, two
bending moments K, M and torsional moment T, and their positive directions are shown in Fig. 3. The details
of the finite element formulation can be found in Ref. [5].

2.1.5. Calculation of natural frequencies of the plate– foundation system

The natural frequencies of the plate–foundation system are obtained from the solution of a standard
eigenvalue problem [k]�o2[m] ¼ 0. By means of the conventional assemblage technique the system matrix [k]
and the mass matrix [m] for the entire domain are obtained. In the mixed FE analysis, the problem of free
vibration yields the following eigenvalue problem:

½k11� ½k12�

½k12� ½k22�

" #
� o2

½0� ½0�

½0� ½m�

" # !
ffg

fwg

( )
¼
f0g

f0g

( )
, (6)

where {f} ¼ {K M T}T and {w} are the stress resultants and the transverse displacement vector,
respectively [5]. Elimination of {f} from Eq. (6) yields

ð½kn� � o2½l�Þfxg ¼ f0g, (7)

where [k*] ¼ [k22]�[k12]
T[k11]

�1[k12] and [k*] is the condensed system matrix of the problem and if an
interaction problem between the plate and foundation is absent [k22] ¼ [0]. The element mass matrix is derived
using a consistent mass formulation.

2.2. Formulation of fluid– structure interaction problem

2.2.1. Fluid formulation

The fluid is assumed to be ideal, i.e., inviscid and incompressible, and its motion is irrotational
and there exists a fluid velocity vector, v, which can be defined as the gradient of the velocity potential
function F as

vðx; y; z; tÞ ¼ rFðx; y; z; tÞ, (8)

where F satisfies Laplace’s equation, r2F ¼ 0, throughout the fluid domain.
Before describing the responses of the flexible structure, it is necessary to assign coordinates to the

deflections at various degrees of freedom and one particular set of generalized coordinates is the principal
coordinate of the dry structure (see, for example, Ref. [26]). For a structure vibrating in an ideal fluid, with
frequency o, the principal coordinate, describing the response of the structure in the rth modal vibration, may
be expressed by

prðtÞ ¼ p0r e
iot. (9)

The velocity potential function due to the distortion of the structure in the rth in vacuo vibrational mode
may be written as follows:

Frðx; y; z; tÞ ¼ iofrðx; y; zÞp0r e
iot; r ¼ 1; 2; . . . ;NM , (10)

where NM represents the number of modes of interest and p0r is an unknown amplitude for the rth principal
coordinate.

On the wetted surface of the vibrating structure the normal fluid velocity must equal the normal velocity on
the structure and this condition for the rth modal vibration of the elastic structure submerged in a quiescent
fluid can be expressed as

qfr

qn
¼ ur � n, (11)
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where n is the unit normal vector on the wetted surface and points out of the region of interest.
The vector ur denotes the displacement response of the structure in the rth principal mode and it may be
written as

urðx; y; z; tÞ ¼ urðx; y; zÞp0r e
iot, (12)

where ur (x, y, z) is the rth modal displacement vector of the median surface of the plate structure, and it is
obtained from the finite element analysis.

It is assumed that the elastic structure vibrates at relatively high frequencies so that the effect of surface
waves can be neglected. Therefore, the free surface condition (infinite frequency limit condition) (see, for
instance, Ref. [15]) for the perturbation potential can be approximated by

fr ¼ 0; on the free surface. (13)

The method of images [23] may be used to satisfy this boundary condition. By adding an imaginary
boundary region, the condition given by Eq. (13) at the horizontal surface can be omitted; thus, the problem is
reduced to a classical Neumann case.

2.2.2. Numerical evaluation of perturbation potential f
The boundary value problem for the perturbation potential, f, may be expressed in the following form:

cðxÞfðxÞ ¼
ZZ
SW

ðfn
ðs; xÞqðsÞ � fðsÞqnðs; xÞÞdS, (14)

where x and s denote, respectively, the evaluation and field points on the wetted surface. SW denotes the
wetted surface of the structure. f* is the fundamental solution, defined as a solution of the equation
r
2f*(s,x) ¼ �d(s,x), where d(s,x) is the Dirac distribution. It satisfies the Laplace equation everywhere except

the evaluation point x, and, for a three-dimensional problem, it is expressed as follows:

fn
ðs; xÞ ¼

1

4pr
. (15)

q ¼ qf/qn is the flux and r the distance between the evaluation and field points. The free term c(x) is due to the
shifting of x to the boundary with a limit process and defines the fraction of f(x) that lies inside the domain of
interest. Moreover, q*(s,x) can be written as

qnðs; xÞ ¼ �ðqr=qnÞ=4pr2. (16)

For the solution of Eq. (14) with boundary condition (11), the wetted surface can be idealized by using
boundary elements, referred to as hydrodynamic panels, and the distribution of the potential function and its
flux over each hydrodynamic panel may be described in terms of the shape functions and nodal values as

fe ¼
Xne

j¼1

Nejfej ; qe ¼
Xne

j¼1

Nejqej. (17)

Here, ne represents the number of nodal points assigned to the eth hydrodynamic panel, and Nej the shape
function adopted for the distribution of the potential function. e and j indicate the hydrodynamic panel and
nodal point numbers, respectively. For the linear distribution adopted in this study, the shape functions for a
quadrilateral panel may be expressed as (see Ref. [27])

Ne1 ¼ ðð1� zÞð1� ZÞÞ=4,

Ne2 ¼ ðð1þ zÞð1� ZÞÞ=4,

Ne3 ¼ ðð1þ zÞð1þ ZÞÞ=4,

Ne4 ¼ ðð1� zÞð1þ ZÞÞ=4 (18)

in the local coordinate system-z Z shown in Fig. 5. For a quadrilateral panel having 4 nodal points at its
corners, ne takes on the value of 4.
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B. Uğurlu et al. / Journal of Sound and Vibration 317 (2008) 308–328316
After substituting Eqs. (17) and (18) into Eq. (14) and applying the boundary condition given in
Eq. (11), the unknown potential function values can be determined from the following set of algebraic
equations:

ckfk þ
XNp

i¼1

Xni

j¼1

fij

ZZ
DSi

Nijq
n dS

0
B@

1
CA ¼XNp

i¼1

Xni

j¼1

uij
nij

ZZ
DSi

Nijf
n dS

0
B@

1
CA; k ¼ 1; 2; . . . ; m, (19)

where m and Np denote the numbers of nodal points and hydrodynamic panels used in the discretization
of the structure. fij

and uij
represent, respectively, the potential value and displacement vector for the jth

nodal point of the ith hydrodynamic panel. ni is the number of nodal points assigned to the ith hydrodynamic
panel.

2.2.3. Calculation of generalized fluid– structure interaction forces

Using Bernoulli’s equation and neglecting the second-order terms, the dynamic fluid pressure on the elastic
structure due to the rth in-vacuo modal vibration becomes

Prðx; y; z; tÞ ¼ �rf

qFr

qt
, (20)

where rf is the fluid density. Substituting Eq. (10) into Eq. (20), the following expression for the pressure is
obtained:

Prðx; y; z; tÞ ¼ rf o
2frðx; y; zÞp0r e

iot. (21)

The kth component of the generalized fluid–structure interaction force due to the rth modal in-vacuo

vibration of the elastic structure can be expressed in terms of the pressure acting on the wetted surface of the
structure as

Zkr ¼

ZZ
SW

Prðx; y; z; tÞukndS

¼ p0r e
iot

ZZ
SW

rf o
2frukndS. (22)

The generalized added mass, Akr term, can be defined as

Akr ¼ rf

ZZ
SW

frukn dS. (23)

Therefore, the generalized fluid–structure interaction force component, Zkr, can be written as

ZkrðtÞ ¼ Akro2p0r e
iot ¼ �Akr €prðtÞ. (24)
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2.2.4. Calculation of wet frequencies and mode shapes

It should be noted that, in the case when a body oscillates in or near a free surface, the hydrodynamic
coefficients exhibit frequency dependence in the low-frequency region, but show a tendency towards a
constant value in the high-frequency region. In this study, it is assumed that the structure vibrates in the high-
frequency region so that the generalized added mass values are constants and evaluated by use of Eq. (23).
Hence, the generalized equation of motion for the dynamic fluid–structure interaction system (see, e.g.,
Ref. [28]), assuming free vibrations with no structural damping, is

½�o2ðaþ AÞ þ c�p ¼ 0, (25)

where a and c denote the generalized structural mass and stiffness matrices, respectively. The matrix A

represents the infinite frequency generalized added mass coefficients.
Solving the eigenvalue problem, expressed by Eq. (25), yields the wet frequencies and associated wet mode

shapes of the structure in contact with fluid. To each wet frequency or, there is a corresponding wet

eigenvector p0r ¼ {pr1, pr2,y, prm}. The corresponding uncoupled wet mode shapes for the structure partially
and totally in contact with fluid are obtained as

ūrðx; y; zÞ ¼ fūr; v̄r; w̄rg ¼
XNM

j¼1

ujðx; y; zÞprj , (26)

where uj(x,y,z) ¼ {uj,vj,wj} denotes the in vacuo mode shapes of the dry plate structure resting on an elastic
foundation and NM the number of modes included in the analysis. It should be noted that the fluid–structure
interaction forces associated with the inertial effect of the fluid do not have the same spatial distribution as
those of the in vacuo modal forms. Consequently, this produces a hydrodynamic coupling between the in vacuo

modes of the plate structure with the elastic foundation. This coupling effect is introduced into Eq. (25)
through the generalized added mass matrix A.
3. Numerical results

A series of calculations have been performed in order to demonstrate the applicability of the method of
analysis to vibrating plate structures resting on an elastic foundation and partially in contact with a quiescent
fluid. A schematic view of the foundation–structure–fluid interaction system is shown in Fig. 1. The plate
chosen is L ¼ 10m long, a ¼ 10m wide and h ¼ 0.15m thick. The plate structure under investigation is made
of concrete and has the following material characteristics: Young’s modulus Es ¼ 25GPa, Poisson’s ratio
us ¼ 0.15 and mass density rs ¼ 2400 kg/m3. For the numerical study, the plate was assumed to be either
simply supported or clamped along its four edges.

In this study, the calculations were performed separately for three different soil types: clay with Young’s
modulus Ef ¼ 50MPa, Poisson’s ratio uf ¼ 0.45 and soil stiffness kf ¼ 15MN/m3 (weak foundation); sand and
gravel with Ef ¼ 200MPa, uf ¼ 0.25 and kf ¼ 150MN/m3 (medium hard foundation); and shale with
Ef ¼ 2500MPa, uf ¼ 0.2 and kf ¼ 2000MN/m3 (hard foundation). Furthermore, it was assumed that the
structure was resting on a Pasternak-type foundation and partially in contact with fresh water with a density
of 1000 kg/m3 (see Fig. 1).

The mode shapes of rectangular plate structures may be identified with two integers, such as i and j. These
integers, i and j, are considered as the number of half-waves along the length and width of the plate structure,
respectively, and a combination of i and j forms a particular mode shape.
3.1. Idealization and convergence

The in vacuo dynamic characteristics (natural frequencies and associated mode shapes) of the plate structure
resting on a Pasternak foundation were obtained by using the aforementioned mixed finite element analysis.
The plate finite element PLTVE4 [5] was adopted in this study, and it is an isoparametric conforming C0 class
element having four corner nodes and at each node four degrees of freedom are present (one transverse
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Table 1

Convergence of dry natural frequencies (Hz) for a plate structure resting on a hard foundation (shale) and clamped along its edges

Mode (i,j) 64 elements 144 elements 256 elements 400 elements

1,1 394.3 394.3 394.3 394.3

1,2 423.0 422.1 421.8 421.8

2,1 423.0 422.1 421.8 421.8

2,2 449.9 448.2 447.8 447.6

3,1 471.4 466.8 465.4 464.8

1,3 471.4 466.8 465.4 464.8

2,3 495.8 490.8 489.2 488.6

3,2 495.8 490.8 489.2 488.6

4,1 540.4 527.2 522.8 520.9

1,4 540.4 527.2 522.8 520.9

Table 2

Convergence of dry natural frequencies (Hz) for a plate structure resting on a weak foundation (clay) and simply supported along its edges

Mode (i,j) 64 elements 144 elements 256 elements 400 elements

1,1 36.34 36.29 36.29 36.29

1,2 42.63 42.38 42.28 42.23

2,1 42.63 42.38 42.28 42.23

2,2 49.07 48.62 48.47 48.37

3,1 54.56 53.35 52.95 52.75

1,3 54.71 53.40 52.95 52.75

2,3 61.15 59.79 59.29 59.09

3,2 61.15 59.79 59.29 59.09

4,1 74.44 70.36 68.95 68.30

1,4 74.44 70.36 68.95 68.30

B. Uğurlu et al. / Journal of Sound and Vibration 317 (2008) 308–328318
displacement, two bending moments and one torsional moment). Therefore, a total number of 16 degrees of
freedom are assigned to each element.

A series of calculations were performed in order to test the convergence of the finite element calculations
(natural frequencies and associated mode shapes). The results of the finite element convergence test studies are
presented in Tables 1 and 2 for two different edge conditions and foundation types. Table 1 presents the
natural frequencies of the plate structure resting on a hard foundation (shale) and clamped along its edges, and
Table 2 those of the plate structure resting on a weak foundation (clay) and simply supported along its edges.
In the tables, the results are presented for four different finite element idealizations. In the first group of
idealizations, the distributions over the plates consist of eight equally spaced elements along the length and
width of the plate structure. Therefore, a total number of 64 elements were distributed over the plate. To test
the convergence of the calculated dynamic properties, the number of elements over the plate was increased first
to 144 (12 elements along the length and width) and then to 256 (16 elements along the length and width). In
the final test of idealizations, the number of elements was increased to 20 along the length and width of the
plate, and therefore a total number of 400 elements were distributed over the structure in this final idealization.
The differences in the results presented in Tables 1 and 2 indicate that the calculated natural frequency values
are converging with increasing number of elements. It can be observed from Table 2 that, for the plate
structure resting on a weak foundation (clay) with simply supported edges, all the natural frequency values are
converged satisfactorily for the last two idealizations. On the other hand, for the plate on a hard foundation
(shale) with clamped edges, the differences between the last two idealizations are considerable small for the
mode shapes presented, as seen from Table 1. The results of the final idealizations (400 elements) were adopted
for the in vacuo dynamic properties of the plate–foundation system. It should also be noted that the in vacuo

dynamic characteristics (mode shapes, etc.) are scaled to a generalized mass of 1 kgm2.
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Table 3

Convergence of wet natural frequencies (Hz) for a plate structure resting on a hard foundation (shale) and clamped along its edges

(submerging depth ratio, H/L ¼ 1.0)

Mode (i,j) 64 panels 144 panels 256 panels 400 panels

1,1 126.1 126.5 126.7 126.9

1,2 170.4 172.1 172.7 173.1

2,1 175.2 177.1 177.8 178.2

2,2 203.6 207.4 208.8 209.5

1,3 217.1 220.7 222.0 222.7

3,1 222.4 226.7 228.2 228.9

2,3 241.1 247.7 250.0 251.1

3,1 242.9 249.9 252.3 253.4

1,4 268.5 274.8 276.7 277.7

4,1 272.1 279.8 282.0 283.1

Table 4

Convergence of wet natural frequencies (Hz) for a plate structure resting on a weak foundation (clay) and simply supported along its edges

(submerging depth ratio, H/L ¼ 0.5)

Mode (i,j) 32 panels 72 panels 128 panels 200 panels

1,1 16.47 16.47 16.46 16.46

1,2 21.34 21.45 21.48 21.48

2,1 29.02 29.19 29.19 29.19

2,2 31.96 31.20 30.90 30.75

1,3 36.62 36.15 35.90 35.77

3,1 40.53 40.58 40.44 40.36

2,3 41.35 41.16 41.05 40.99

3,1 44.22 44.34 44.18 44.07

1,4 47.41 47.16 47.02 46.93

4,1 58.50 55.63 54.45 53.88
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To test the convergence of the boundary element calculations (hydrodynamic predictions), various numbers
of hydrodynamic panels (boundary elements) were distributed over the wetted surface of the plate. The main
aim of this exercise was to represent accurately the distortional mode shapes of the wetted surface area of the
plate. The results of the wet convergence studies are given in Tables 3 and 4, respectively, for the plate resting
on the hard (shale) and weak (clay) foundations. The results in Tables 3 and 4 are calculated, respectively, for
the submerging depth ratios H/L ¼ 1 and 0.5. Furthermore, for the results presented in Tables 3 and 4, the
plate structure is, respectively, clamped and simply supported along all its edges. Four different idealizations
were considered over the wetted surface of the plate structure. The hydrodynamic panels were distributed over
the wetted surface as follows: one structural element (finite element) corresponding to one hydrodynamic
panel. Therefore, the same number of hydrodynamic panels and structural elements were adopted for the
wet results presented for the submerging depth ratio H/L ¼ 1 in Table 3. Therefore, 64, 144, 256 and 400
hydrodynamic panels were distributed over the wetted surface, respectively, for four idealizations considered
in Table 3. It can be observed from the table that the wet frequency values converge with increasing number of
hydrodynamic panels. The frequency values of the final idealization (400 panels) may be assumed as
reasonably converged. For the plate simply supported along its edges with the submerging depth ratio
H/L ¼ 0.5 and resting on a weak foundation (clay), 32, 72, 128 and 200 hydrodynamic panels were distributed
over the wetted surface separately for four different idealization. For these idealizations the hydrodynamic
panels are distributed along the length and width, respectively, as follows: 4 and 8 (32 panels); 6 and 12
(72 panels); 8 and 16 (128 panels); and 10 and 20 (200 panels). It can be observed from Table 4 that the wet

frequencies are converging fast with increasing number of hydrodynamic panels. The differences between the
last two idealizations (128 and 200 hydrodynamic panel idealizations) are reasonably small for all the modes
given in Table 4. For all the results presented in this study, 80, 160, 240, 320 and 400 hydrodynamic panels
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were adopted for the plate with the submerging depth ratios, H/L ¼ 0.2, 0.4, 0.6, 0.8 and 1, respectively. On
the other hand, an additional convergence study was also carried out to establish the number of distortional
modes needed for the predictions. As a result of this analysis, 40 in vacuo modes were included in the
calculations presented in this study.
3.2. Numerical calculations

By solving the eigenvalue problem, Eq. (25), the uncoupled modes and associated frequencies of the plate
resting on a foundation and partially submerged in a quiescent fluid were obtained for two different edge
support conditions, i.e., simply supported and clamped edge conditions. It should be mentioned that the finite
element method adopted in this study was successfully employed before and verified with the analytical results
found in the literature (see Ref. [5]). On the other hand, the fluid–structure interaction approach used was also
successfully employed for the problems of fluid-containing shell structures and also for cantilever plates
partially submerged in fluid (see, for example, Ref. [15,23]). Unfortunately, for this study, there is no result
available for comparison purposes. It is expected that the results presented here may serve as a benchmark for
future studies on the subject. Furthermore, the non-dimensional frequency values presented in Tables 5 and 6
are calculated according to the following expression: O ¼ oa2(rsh/D)1/2, where o is the circular frequency in
Hz and D the flexural rigidity and defined as D ¼ Eh3/12(1�u2). a, h and rs are, respectively, the width,
thickness and density of the plate considered.

The calculated non-dimensional dry and wet natural frequencies are presented in Table 5 for the plate
structure with or without a foundation and partially in contact with fresh water. The effects of various
foundation types were considered, and the results are presented for weak (clay), medium hard (sand and
gravel) and hard (shale) foundations, and for simply supported edge conditions. As can be observed from
Table 5, the non-dimensional natural frequency values are given for the submerging depth ratios, H/L ¼ 0,
Table 5

Non-dimensional frequency values for a plate structure simply supported along its edges

Mode (i,j) H/L Mode (i,j) H/L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

No foundation Weak foundation

1,1 3.169 3.064 2.196 1.496 1.173 1.036 1,1 25.67 22.63 13.46 10.49 9.098 8.315

2,1 7.902 7.092 5.708 5.174 3.926 3.337 2,1 29.88 26.86 25.62 18.38 14.49 12.63

1,2 7.902 7.622 5.382 4.058 3.484 3.261 1,2 29.88 26.38 16.96 14.12 12.90 12.29

2,2 12.68 11.40 9.974 8.746 6.777 5.942 2,2 34.22 31.05 29.59 21.83 17.83 16.03

3,1 15.95 13.80 12.57 10.57 9.410 7.848 3,1 37.32 33.34 29.82 28.16 21.82 18.36

1,3 15.99 15.25 10.65 8.750 7.951 7.623 1,3 37.32 32.68 22.47 19.63 18.42 17.84

3,1 20.69 18.10 16.68 14.47 12.66 10.72 3,2 41.80 37.70 33.91 32.07 25.23 21.67

2,3 20.69 18.64 17.52 14.57 11.74 10.63 2,3 41.80 38.41 36.33 27.42 23.29 21.47

4,1 27.52 24.21 21.36 19.32 17.66 14.91 4,1 48.32 43.74 39.32 34.62 31.62 26.22

1,4 27.52 25.66 18.31 15.96 15.00 14.62 1,4 48.32 41.80 30.45 27.43 26.23 25.70

Medium hard foundation Hard foundation

1,1 76.48 57.46 36.68 30.01 26.65 24.59 1,1 278.8 203.2 132.5 109.0 96.93 89.51

2,1 82.14 77.33 62.77 46.26 38.85 34.68 2,1 297.9 281.3 219.5 165.5 140.3 125.7

1,2 82.14 62.76 43.22 37.59 35.05 33.68 1,2 297.9 220.2 155.2 135.8 126.9 122.0

2,2 87.66 82.98 67.81 51.71 44.64 40.99 2,2 315.9 300.3 219.5 183.7 160.2 147.6

3,1 91.47 85.20 79.06 65.48 51.82 45.02 3,1 327.9 306.8 286.2 227.7 184.0 161.3

1,3 91.47 70.71 51.92 47.11 44.86 43.77 1,3 327.9 244.5 184.0 168.3 160.5 156.8

3,2 96.85 90.69 84.61 69.89 56.79 50.19 3,1 344.4 324.4 304.6 242.2 200.0 178.4

2,3 96.85 92.27 75.29 59.59 52.99 49.72 2,3 344.4 330.1 256.1 208.6 187.6 176.8

4,1 104.5 97.58 90.26 82.24 67.11 56.74 4,1 367.0 344.6 317.9 288.8 232.4 199.3

1,4 104.5 81.96 62.89 58.35 56.45 55.62 1,4 367.0 278.0 218.3 204.1 198.1 195.4
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Table 6

Non-dimensional frequency values for a plate structure clamped along its edges

Mode (i,j) H/L Mode (i,j) H/L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

No foundation Weak foundation

1,1 5.730 5.674 4.202 2.747 2.157 1.948 1,1 26.42 25.43 14.84 11.18 9.57 8.75

2,1 11.75 11.18 8.590 7.606 5.754 5.101 2,1 31.65 28.94 27.13 19.77 15.39 13.61

1,2 11.75 11.60 8.254 6.109 5.282 5.023 1,2 31.65 30.26 18.88 15.37 13.95 13.34

2,2 17.27 16.34 13.84 11.84 9.164 8.300 2,2 36.85 33.82 32.04 23.82 19.30 17.57

3,1 21.26 19.10 16.78 14.47 12.31 10.64 3,1 40.55 36.23 32.50 29.97 23.43 20.21

1,3 21.36 20.89 14.42 11.76 10.71 10.27 1,3 40.59 38.10 25.16 21.71 20.30 19.67

3,2 26.49 23.85 21.43 18.94 15.96 13.94 3,2 45.64 41.18 37.23 34.80 27.33 23.95

2,3 26.49 24.81 22.78 18.51 14.97 13.85 2,3 45.64 42.17 40.17 30.47 25.55 23.79

4,1 34.54 30.29 26.84 24.21 21.89 18.80 4,1 53.33 47.79 34.20 38.03 34.38 29.11

1,4 34.54 33.28 23.21 20.08 18.90 18.49 1,4 53.33 48.85 42.98 30.57 29.19 28.65

Medium hard foundation Hard foundation

1,1 76.91 62.23 37.95 30.67 27.12 25.01 1,1 279.0 205.8 133.2 109.3 97.20 89.75

2,1 83.17 77.88 65.39 47.51 39.59 35.42 2,1 298.4 281.6 220.9 166.2 140.7 126.1

1,2 83.17 67.84 44.82 38.63 35.93 34.53 1,2 298.4 222.9 156.0 136.3 127.4 122.5

2,2 89.27 84.11 70.87 53.32 45.78 42.14 2,2 316.7 300.8 236.6 184.5 160.8 148.2

3,1 93.43 86.52 79.90 67.47 52.97 46.29 3,1 328.8 307.5 286.6 228.8 184.7 162.0

1,3 93.43 76.28 54.01 48.66 46.27 45.14 1,3 328.8 247.4 185.1 169.1 161.3 157.5

3,2 99.30 92.57 86.00 72.34 58.21 51.83 3,2 345.7 325.3 305.3 243.5 200.8 179.3

2,3 99.30 94.30 78.74 61.71 54.68 51.44 2,3 345.7 331.1 257.9 209.8 188.5 177.7

4,1 107.7 99.98 92.51 83.90 68.82 58.75 4,1 368.5 345.8 319.3 289.8 233.2 200.3

1,4 107.7 88.44 65.65 60.65 58.72 57.78 1,4 368.5 281.5 219.7 205.3 199.2 196.5
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0.2, 0.4, 0.6, 0.8 and 1, and the lowest non-dimensional frequency values are obtained for the plate with no
foundation. It can also be realized that the wet frequencies increase with increasing hardness of foundation for
a specific mode shape and submerging depth ratio. For instance, for the first mode shape (i ¼ 1, j ¼ 1) and
submerging depth ratio H/L ¼ 0.4, the non-dimensional wet frequency of the plate structure takes on the
values of 13.46, 36.68 and 132.5, respectively, for the weak, medium hard and hard foundation types. On
the other hand, it can be seen that the frequencies decrease with increasing submerging depth, and therefore
the lowest frequency values were obtained for the submerging depth ratio H/L ¼ 1.

The calculations were repeated for clamped edge conditions, and these results are presented in Table 6. By
comparing the non-dimensional frequency values in Tables 5 and 6, it can be observed that all the frequencies
of the plate structure with clamped edges are higher in comparison with the corresponding ones of the plate
with simply supported edges. Meanwhile, the observations made previously for the plate with simply
supported edges can also be repeated here for the plate with clamped edges. That is to say, the frequency
values increase with increasing hardness of the foundation, and that they decrease with increasing submerging
depth ratio.

Tables 7 and 8 show the calculated generalized added masses for the plate structure, respectively, with
simply supported and clamped edges. Those results presented in Tables 7 and 8 are the generalized added mass
parameters, Ākr, and they are defined as Ākr ¼ Akrðrf a=rshÞ � 100, where Akr is the kth generalized added
mass term due to the vibration in the rth in vacuo mode. The added mass parameters for the first eight
distortional in vacuo modes are presented for the submerging depth ratios H/L ¼ 0.2, 0.6 and 1.0, and for
weak, medium hard and hard foundation types. The added mass values correspond to a generalized structural
mass of 1 kgm2. Here, it is assumed that the structure preserves its in vacuo principal mode shapes in the fluid
and that each mode gives rise to the surface pressure distribution of the flexible structure. However, the
hydrodynamic forces associated with the inertial effect of the surrounding fluid medium do not necessarily
have the same spatial distribution as those of the in vacuo principal modes. Consequently, this produces



Table 7

Generalized added mass parameters of a plate structure simply supported along its edges

Mode (i,j) Weak foundation Medium hard foundation Hard foundation

1,1 2,1 1,2 2,2 3,1 1,3 3,2 2,3 1,1 2,1 1,2 2,2 3,1 1,3 3,2 2,3 1,1 2,1 1,2 2,2 3,1 1,3 3,2 2,3

H/L ¼ 0.2 H/L ¼ 0.2 H/L ¼ 0.2

1,1 0.236 0.438 �0.005 0.000 0.405 0.410 0.000 �0.005 0.236 0.436 0.042 0.000 �0.405 �0.410 0.000 0.006 0.236 �0.433 0.067 0.000 0.406 �0.411 �0.001 0.007

2,1 0.438 0.812 �0.006 0.004 0.753 0.762 �0.005 �0.010 0.436 0.807 0.057 �0.038 �0.750 �0.759 �0.050 0.011 �0.433 0.799 �0.091 �0.061 �0.744 0.754 0.081 0.002

1,2 �0.005 �0.006 0.214 0.397 �0.008 �0.008 �0.521 �0.028 0.042 0.057 0.220 0.396 �0.072 �0.073 0.521 0.004 0.067 �0.091 0.229 �0.394 0.116 �0.117 0.509 0.097

2,2 0.000 0.004 0.397 0.735 0.000 0.000 �0.967 �0.051 0.000 �0.038 0.396 0.737 0.000 0.000 0.971 0.005 0.000 �0.061 �0.394 0.739 0.000 0.000 �0.956 �0.178

3,1 0.405 0.753 �0.008 0.000 0.797 0.612 �0.013 0.244 �0.405 �0.750 �0.072 0.000 0.797 0.612 �0.001 0.243 0.406 �0.744 0.116 0.000 0.797 �0.612 0.044 �0.238

1,3 0.410 0.762 �0.008 0.000 0.612 0.813 0.014 �0.261 �0.410 �0.759 �0.073 0.000 0.612 0.815 0.001 �0.265 �0.411 0.754 �0.117 0.000 �0.612 0.816 0.049 �0.263

3,2 0.000 �0.005 �0.521 �0.967 �0.013 0.014 1.278 0.033 0.000 �0.050 0.521 0.971 �0.001 0.001 1.281 0.003 �0.001 0.081 0.509 �0.956 0.044 0.049 1.262 0.111

2,3 �0.005 �0.010 �0.028 �0.051 0.244 �0.261 0.033 0.664 0.006 0.011 0.004 0.005 0.243 �0.265 0.003 0.665 0.007 0.002 0.097 �0.178 �0.238 �0.263 0.111 0.688

H/L ¼ 0.6 H/L ¼ 0.6 H/L ¼ 0.6

1,1 11.52 9.405 �0.100 0.000 0.138 1.187 0.040 �0.752 11.52 9.364 0.900 0.000 �0.138 �1.187 �0.004 0.749 11.52 �9.297 1.444 0.000 0.138 �1.188 �0.137 0.735

2,1 9.405 10.38 �0.021 0.067 2.956 4.009 0.044 �0.795 9.364 10.37 0.191 �0.608 �2.942 �3.992 0.009 0.793 �9.297 10.34 �0.304 �0.975 �2.920 3.965 0.123 �0.779

1,2 �0.100 �0.021 8.378 6.347 �0.031 �0.043 0.143 0.016 0.900 0.191 8.397 6.321 �0.283 �0.384 �0.142 0.075 1.444 �0.304 8.426 �6.276 0.453 �0.616 �0.160 0.095

2,2 0.000 0.067 6.347 7.136 0.000 0.000 �3.386 �0.180 0.000 �0.608 6.321 7.138 0.000 0.000 3.392 0.018 0.000 �0.975 �6.276 7.139 0.000 0.000 �3.336 �0.620

3,1 0.138 2.956 �0.031 0.000 6.544 0.356 �0.161 3.038 �0.138 �2.942 �0.283 0.000 6.544 0.356 �0.016 3.039 0.138 �2.920 0.453 0.000 6.544 �0.357 0.555 �2.986

1,3 1.187 4.009 �0.043 0.000 0.356 7.148 0.189 �3.569 �1.187 �3.992 �0.384 0.000 0.356 7.149 0.019 �3.579 �1.188 3.965 �0.616 0.000 �0.357 7.150 0.655 �3.523

3,2 0.040 0.044 0.143 �3.386 �0.161 0.189 5.933 0.029 �0.004 0.009 �0.142 3.392 �0.016 0.019 5.936 0.003 �0.137 0.123 �0.160 �3.336 0.555 0.655 5.920 0.097

2,3 �0.752 �0.795 0.016 �0.180 3.038 �3.569 0.029 5.394 0.749 0.793 0.075 0.018 3.039 �3.579 0.003 5.394 0.735 �0.779 0.095 �0.620 �2.986 �3.523 0.097 5.413

H/L ¼ 1.0 H/L ¼ 1.0 H/L ¼ 1.0

1,1 29.99 2.942 �0.031 0.000 �0.822 3.857 0.036 �0.684 30.00 2.931 0.282 0.000 0.822 �3.856 �0.004 0.688 30.00 �2.910 0.452 0.000 �0.822 �3.856 �0.126 0.678

2,1 2.942 16.83 0.007 0.007 0.619 1.593 0.042 �0.910 2.931 16.84 �0.064 �0.063 �0.616 �1.587 �0.057 0.906 �2.910 16.85 0.102 �0.101 �0.612 1.577 0.247 �0.870

1,2 �0.031 0.007 17.50 0.656 �0.007 �0.017 �0.547 �0.019 0.282 �0.064 17.50 0.655 �0.059 �0.153 0.545 0.090 0.452 0.102 17.49 �0.651 0.095 �0.245 0.508 0.237

2,2 0.000 0.007 0.656 12.80 0.000 0.000 �0.568 �0.030 0.000 �0.063 0.655 12.80 0.000 0.000 0.570 0.003 0.000 �0.101 �0.651 12.80 0.000 0.000 �0.562 �0.104

3,1 �0.822 0.619 �0.007 0.000 11.55 �0.443 �0.002 0.046 0.822 �0.616 �0.059 0.000 11.55 �0.443 0.000 0.046 �0.822 �0.612 0.095 0.000 11.55 0.443 0.008 �0.045

1,3 3.857 1.593 �0.017 0.000 �0.443 12.50 0.023 �0.437 �3.856 �1.587 �0.153 0.000 �0.443 12.50 0.002 �0.440 �3.856 1.577 �0.245 0.000 0.443 12.50 0.081 �0.434

3,2 0.036 0.042 �0.547 �0.568 �0.002 0.023 9.823 �0.015 �0.004 �0.057 0.545 0.570 0.000 0.002 9.824 �0.001 �0.126 0.247 0.508 �0.562 0.008 0.081 9.836 �0.049

2,3 �0.684 �0.910 �0.019 �0.030 0.046 �0.437 �0.015 10.10 0.688 0.906 0.090 0.003 0.046 �0.440 �0.001 10.10 0.678 �0.870 0.237 �0.104 �0.045 �0.434 �0.049 10.09
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Table 8

Generalized added mass parameters of a plate structure clamped along its edges

Mode

(i,j)

Weak foundation Medium hard foundation Hard foundation

1,1 1,2 2,1 2,2 3,1 1,3 2,3 3,2 1,1 1,2 2,1 2,2 3,1 1,3 2,3 3,2 1,1 1,2 2,1 2,2 3,1 1,3 2,3 3,2

H/L ¼ 0.2 H/L ¼ 0.2 H/L ¼ 0.2

1,1 0.113 �0.013 0.222 0.000 0.223 0.226 �0.002 0.000 0.163 �0.019 0.308 0.000 0.296 0.300 �0.005 0.000 0.223 �0.013 0.415 0.000 0.386 0.391 �0.006 �0.002

1,2 �0.013 0.111 �0.019 �0.214 �0.026 �0.026 �0.004 �0.302 �0.019 0.153 �0.026 �0.285 �0.034 �0.035 0.027 �0.386 �0.013 0.204 �0.018 0.378 �0.023 �0.023 0.179 �0.466

2,1 0.222 �0.019 0.437 �0.013 0.439 0.447 �0.006 �0.018 0.308 �0.026 0.583 �0.017 0.559 0.567 �0.008 �0.024 0.415 �0.018 0.771 0.012 0.718 0.728 �0.006 �0.019

2,2 0.000 �0.214 �0.013 0.418 0.000 0.000 0.009 0.592 0.000 �0.285 �0.017 0.539 0.000 0.000 �0.051 0.731 0.000 0.378 0.012 0.702 0.000 0.000 0.332 �0.867

3,1 0.223 �0.026 0.439 0.000 0.494 0.397 0.137 �0.002 0.296 �0.034 0.559 0.000 0.607 0.475 0.175 0.012 0.386 �0.023 0.718 0.000 0.763 0.587 0.215 0.082

1,3 0.226 �0.026 0.447 0.000 0.397 0.516 �0.158 0.002 0.300 �0.035 0.567 0.000 0.475 0.624 �0.197 �0.014 0.391 �0.023 0.728 0.000 0.587 0.781 �0.238 �0.091

2,3 �0.002 �0.004 �0.006 0.009 0.137 �0.158 0.403 0.007 �0.005 0.027 �0.008 �0.051 0.175 �0.197 0.500 �0.035 �0.006 0.179 �0.006 0.332 0.215 �0.238 0.712 �0.199

3,2 0.000 �0.302 �0.018 0.592 �0.002 0.002 0.007 0.842 0.000 �0.386 �0.024 0.731 0.012 �0.014 �0.035 0.996 �0.002 �0.466 �0.019 �0.867 0.082 �0.091 �0.199 1.154

H/L ¼ 0.6 H/L ¼ 0.6 H/L ¼ 0.6

1,1 11.02 �0.515 8.742 0.000 �0.024 1.221 �0.809 0.012 11.25 �0.554 9.049 0.000 0.046 1.162 �0.774 �0.054 11.48 �0.293 9.347 0.000 0.123 1.180 �0.702 �0.269

1,2 �0.515 8.052 �0.099 �5.907 �0.162 �0.237 0.056 0.207 �0.554 8.195 �0.112 �6.099 �0.174 �0.242 0.037 0.196 �0.293 8.349 �0.062 6.308 �0.092 �0.125 �0.031 0.150

2,1 8.742 �0.099 9.734 �0.348 2.754 4.028 �0.892 0.026 9.049 �0.112 10.01 �0.374 2.834 3.952 �0.828 �0.046 9.347 �0.062 10.32 0.197 2.934 3.997 �0.749 �0.282

2,2 0.000 �5.907 �0.348 6.722 0.000 0.000 0.050 3.294 0.000 �6.099 �0.374 6.894 0.000 0.000 �0.229 3.305 0.000 6.308 0.197 7.097 0.000 0.000 1.210 �3.154

3,1 �0.024 �0.162 2.754 0.000 6.319 0.329 2.814 �0.043 0.046 �0.174 2.834 0.000 6.404 0.340 2.907 0.202 0.123 �0.092 2.934 0.000 6.519 0.354 2.816 1.080

1,3 1.221 �0.237 4.028 0.000 0.329 7.004 �3.474 0.053 1.162 �0.242 3.952 0.000 0.340 7.029 �3.485 �0.242 1.180 �0.125 3.997 0.000 0.354 7.127 �3.329 �1.277

2,3 �0.809 0.056 �0.892 0.050 2.814 �3.474 5.176 0.008 �0.774 0.037 �0.828 �0.229 2.907 �3.485 5.249 �0.039 �0.702 �0.031 �0.749 1.210 2.816 �3.329 5.438 �0.183

3,2 0.012 0.207 0.026 3.294 �0.043 0.053 0.008 5.737 �0.054 0.196 �0.046 3.305 0.202 �0.242 �0.039 5.811 �0.269 0.150 �0.282 �3.154 1.080 �1.277 �0.183 5.846

H/L ¼ 1.0 H/L ¼ 1.0 H/L ¼ 1.0

1,1 28.48 �0.135 2.287 0.000 �0.613 4.810 �0.641 0.010 29.23 �0.157 2.565 0.000 �0.694 4.247 �0.652 �0.045 29.87 �0.090 2.878 0.000 �0.798 3.913 �0.638 �0.245

1,2 �0.135 16.49 0.029 �0.446 �0.026 �0.080 0.050 �0.852 �0.157 16.94 0.035 �0.527 �0.031 �0.087 0.108 �0.695 �0.090 17.41 0.020 0.634 �0.019 �0.049 0.233 �0.526

2,1 2.287 0.029 15.99 �0.026 0.435 1.360 �1.062 �0.034 2.565 0.035 16.38 �0.032 0.503 1.427 �0.962 �0.110 2.878 0.020 16.76 0.020 0.597 1.562 �0.852 �0.346

2,2 0.000 �0.446 �0.026 12.18 0.000 0.000 0.006 0.393 0.000 �0.527 �0.032 12.45 0.000 0.000 �0.031 0.452 0.000 0.634 0.020 12.74 0.000 0.000 0.196 �0.512

3,1 �0.613 �0.026 0.435 0.000 11.01 �0.367 0.001 0.000 �0.694 �0.031 0.503 0.000 11.23 �0.387 0.017 0.001 �0.798 �0.019 0.597 0.000 11.50 �0.432 0.038 0.014

1,3 4.810 �0.080 1.360 0.000 �0.367 12.45 �0.418 0.006 4.247 �0.087 1.427 0.000 �0.387 12.36 �0.409 �0.028 3.913 �0.049 1.562 0.000 �0.432 12.47 �0.406 �0.156

2,3 �0.641 0.050 �1.062 0.006 0.001 �0.418 9.705 �0.003 �0.652 0.108 �0.962 �0.031 0.017 �0.409 9.847 0.016 �0.638 0.233 �0.852 0.196 0.038 �0.406 10.02 0.089

3,2 0.010 �0.852 �0.034 0.393 0.000 0.006 �0.003 9.498 �0.045 �0.695 �0.110 0.452 0.001 �0.028 0.016 9.622 �0.245 �0.526 �0.346 �0.512 0.014 �0.156 0.089 9.826
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Fig. 6. Mode shape (i ¼ 1, j ¼ 2) for a plate simply supported along its edges. No foundation: (a) H/L ¼ 0.0; (b) H/L ¼ 0.6. Medium

hard foundation (sand and gravel): (c) H/L ¼ 0.0; (d) H/L ¼ 0.2; (e) H/L ¼ 0.4; (f) H/L ¼ 0.6; (g) H/L ¼ 0.8; (h) H/L ¼ 1.0.
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hydrodynamic coupling between the in vacuo modes. As can be seen from Tables 7 and 8, there is strong
hydrodynamic coupling between some of the in vacuo modes. It can also be observed from Tables 7 and 8 that
the generalized added mass matrices are symmetric and the cross-coupling terms are generally small in
comparison with the diagonal ones. On the other hand, it can be realized that the coupling effects generally
become stronger for small submerging depths. For instance, the ratios of the cross-coupling terms to
corresponding diagonal terms are mainly larger for the submerging depth ratio H/L ¼ 0.2 when compared
with the fully submerged plate (depth ratio H/L ¼ 1.0).

Fig. 6 shows the mode shape (1, 2) for various submerging depths and simply supported edge
conditions. The calculations were performed for the plate structure with no foundation and medium hard
foundation (sand and gravel). For the case of no foundation, the mode shape (2, 1) is presented for the
submerging depth ratios H/L ¼ 0.0 and 0.6 (see Figs. 6 (a) and (b)). Moreover, for those in Figs. 6 (c)–(h), the
plate structure was resting on the medium hard foundation with the submerging depth ratios, H/L, 0.0, 0.2,
0.4, 0.6, 0.8 and 1, respectively. As can be seen from Fig. 6 (b), the in vacuo mode shape is more or less
preserved when the plate is submerged with the depth ratio, H/L ¼ 0.6. Furthermore, for the plate
with a medium hard foundation and lower depth ratios such as H/L ¼ 0.2 and 0.4, the wet part of the plate
structure shows high levels of vibration. The larger area of the plate indulges into vibration as the depth ratio,
H/L, increases. For the fully submerged case, H/L ¼ 1.0, the modal vibration form resembles like the
corresponding in vacuo modal form.
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Fig. 7. Mode shape (i ¼ 2, j ¼ 3) for a plate clamped along its edges. Weak foundation (clay): (a) H/L ¼ 0.0; (b) H/L ¼ 0.2; (c) H/

L ¼ 0.6; (d) H/L ¼ 1.0. Hard foundation (shale): (e) H/L ¼ 0.0; (f) H/L ¼ 0.2; (g) H/L ¼ 0.6; (h) H/L ¼ 1.0.
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Fig. 7 presents the vibrational mode (2, 3) for the plate structure resting on the weak (clay) or hard
foundations (shale) and for the depth ratios, H/L ¼ 0.0, 0.2, 0.6 and 1.0. All the edges of the plate structure
are considered as clamped. As can be seen from Fig. 7, the mode (2, 3) displays different vibrational patterns
for each depth ratio. However, it can be observed from the same figure that the in vacuo vibrational forms are
almost the same as the fully submerged case (H/L ¼ 1.0). This is because the coupling between the in vacuo

modes for the fully submerged case is very weak, and therefore, the modal forms remain nearly unchanged. It
should also be noted that the frequencies of the plate structure increase with increasing hardness of the
foundation and they decrease with increasing submerging depth.

Furthermore, the calculations were repeated for the plate clamped along its edges and resting on a medium
hard foundation (sand and gravel). For these calculations, the depth ratio was taken as H/L ¼ 0.5. In Fig. 8,
the first eight wet vibrational modal forms are presented. It can be seen from the figure that the part of the
plate in contact with water shows high levels of vibration. This is due to the inertial effect of the surrounding
water.

4. Conclusions

A method of analysis is presented for investigating the effects of elastic foundation and fluid on the dynamic
characteristics of elastic plate structures. A mixed-type finite element formulation was employed for the
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Fig. 8. Mode shapes of a plate structure resting on a medium hard foundation (sand and gravel) and clamped along its edges, for

submerging depth ratio, H/L ¼ 0.5: (a) first mode (i ¼ 1, j ¼ 1); (b) second mode (i ¼ 1, j ¼ 2); (c) third mode (i ¼ 1, j ¼ 3); (d) fourth

mode (i ¼ 2, j ¼ 1); (e) fifth mode (i ¼ 2, j ¼ 2); (f) sixth mode (i ¼ 1, j ¼ 4); (g) seventh mode (i ¼ 2, j ¼ 3); (h) eight mode (i ¼ 3, j ¼ 1).
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in vacuo analysis of the structure by using the Gâteaux differential for the derivation of the functional for the
Kirchhoff plate–Pasternak-type elastic foundation interaction. For the calculation of the fluid–structure
interaction effects a boundary integral equation method was adopted together with the method of images in
order to impose an appropriate boundary condition on the fluid’s free surface.

From the results given in this study, the calculations based on the presented method behave as expected.
That is to say, the frequencies of the plate structure contacting an elastic foundation increase with increasing
hardness of the foundation, and the wet frequencies of the foundation–plate–fluid system decrease with
increasing area of contact with the fluid. The finite element and boundary element methods adopted in this
study were verified before in the open literature (see, for instance, Refs. [5–7,15,22,23]).

As can be seen from Tables 7 and 8, the generalized added mass parameters are symmetric, and off-diagonal
terms represent the effect of coupling between the in vacuo modes. It can also be concluded from Tables 7 and
8 that the coupling becomes stronger with decreasing submerging depth ratio.

The structural and fluid idealizations are independent and both depend on the complexity of the structure
and the convergence of the results. To test the convergence of the finite element and boundary element
methods, various numbers of finite elements and boundary elements were distributed over the plate structure.
The in vacuo dynamic characteristics obtained using the mix finite element formulation were adopted for the
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wet calculations. It can be realized from Tables 1–4 that the finite element and boundary element results
converge with increasing number of elements and hydrodynamic panels, respectively.

It can be observed from Figs. 6–8 that the wet part of the plate structure shows high levels of vibration
compared with the rest of the plate structure.

The present work has demonstrated the versatility of the method (finite element—boundary element
method) developed for the analysis of the foundation–plate–fluid interaction systems.
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